Unit 5 Lesson 17: Scaling One Dimension
 1 Driving the Distance (Warm up)
 Student Task Statement

Here is a graph of the amount of gas burned during a trip by a tractor-trailer truck as it drives at a constant speed down a highway:

1. At the end of the trip, how far did the truck drive, and how much gas did it use?
2. If a truck traveled half this distance at the same rate, how much gas would it use?
3. If a truck traveled double this distance at the same rate, how much gas would it use?
4. Complete the sentence: \qquad is a function of \qquad .

2 Double the Edge (Optional)

Student Task Statement

There are many right rectangular prisms with one edge of length 5 units and another edge of length 3 units. Let s represent the length of the third edge and V represent the volume of these prisms.

1. Write an equation that represents the relationship between V and s.
2. Graph this equation and label the axes.

3. What happens to the volume if you double the edge length s ? Where do you see this in the graph? Where do you see it algebraically?

3 Halve the Height (Optional)

Student Task Statement

There are many cylinders with radius 5 units. Let h represent the height and V represent the volume of these cylinders.

1. Write an equation that represents the relationship between V and h. Use 3.14 as an approximation of π.
2. Graph this equation and label the axes.

3. What happens to the volume if you halve the height, h ? Where can you see this in the graph? How can you see it algebraically?

4 Figuring Out Cone Dimensions (Optional)

Student Task Statement

Here is a graph of the relationship between the height and the volume of some cones that all have the same radius:

1. What do the coordinates of the labeled point represent?
2. What is the volume of the cone with height 5 ? With height 30 ?
3. Use the labeled point to find the radius of these cones. Use 3.14 as an approximation for π.
4. Write an equation that relates the volume V and height h.
