

Lesson 14: Solving Exponential Equations

• Let's solve equations using logarithms.

14.1: A Valid Solution?

To solve the equation $5 \cdot e^{3a} = 90$, Lin wrote the following:

$$5 \cdot e^{3a} = 90$$

$$e^{3a} = 18$$

$$3a = \log_e 18$$

$$a = \frac{\log_e 18}{3}$$

Is her solution valid? Be prepared to explain what she did in each step to support your answer.

14.2: Natural Logarithm

1. Complete the table with equivalent equations. The first row is completed for you.

	exponential form	logarithmic form
a.	$e^0 = 1$	ln 1 = 0
b.	$e^1 = e$	
c.	$e^{-1} = \frac{1}{e}$	
d.		$ \ln \frac{1}{e^2} = -2 $
e.	$e^x = 10$	

2. Solve each equation by expressing the solution using ln notation. Then, find the approximate value of the solution using the "ln" button on a calculator.

a.
$$e^m = 20$$

b.
$$e^n = 30$$

c.
$$e^p = 7.5$$

14.3: Solving Exponential Equations

Without using a calculator, solve each equation. It is expected that some solutions will be expressed using log notation. Be prepared to explain your reasoning.

$$1.10^x = 10,000$$

$$2.5 \cdot 10^x = 500$$

3.
$$10^{(x+3)} = 10,000$$

$$4. 10^{2x} = 10,000$$

$$5.10^x = 315$$

6.
$$2 \cdot 10^x = 800$$

7.
$$10^{(1.2x)} = 4,000$$

8.
$$7 \cdot 10^{(0.5x)} = 70$$

9.
$$2 \cdot e^x = 16$$

10.
$$10 \cdot e^{3x} = 250$$

Are you ready for more?

- 1. Solve the equations $10^n = 16$ and $10^n = 2$. Express your answers as logarithms.
- 2. What is the relationship between these two solutions? Explain how you know.

Lesson 14 Summary

So far we have solved exponential equations by

- finding whole number powers of the base (for example, the solution of $10^x = 100,000$ is 5)
- estimation (for example, the solution of $10^x = 300$ is between 2 and 3)
- using a logarithm and approximating its value on a calculator (for example, the solution of $10^x = 300$ is $\log 300 \approx 2.48$)

Sometimes solving exponential equations takes additional reasoning. Here are a couple of examples.

$$5 \cdot 10^{x} = 45$$

$$5 \cdot 10^{x} = 45$$

$$10^{(0.2t)} = 1,000$$

$$10^{(0.2t)} = 10^{3}$$

$$0.2t = 3$$

$$t = \frac{3}{0.2}$$

$$t = 15$$

In the first example, the power of 10 is multiplied by 5, so to find the value of x that makes this equation true each side was divided by 5. From there, the equation was rewritten as a logarithm, giving an exact value for x.

In the second example, the expressions on each side of the equation were rewritten as powers of 10: $10^{(0.2t)}=10^3$. This means that the exponent 0.2t on one side and the 3 on

the other side must be equal, and leads to a simpler expression to solve where we don't need to use a logarithm.

How do we solve an exponential equation with base e, such as $e^x=5$? We can express the solution using the **natural logarithm**, the logarithm for base e. Natural logarithm is written as \ln , or sometimes as \log_e . Just like the equation $10^2=100$ can be rewritten, in logarithmic form, as $\log_{10}100=2$, the equation $e^0=1$ and be rewritten as $\ln 1=0$. Similarly, $e^{-2}=\frac{1}{e^2}$ can be rewritten as $\ln \frac{1}{e^2}=-2$.

All this means that we can solve $e^x = 5$ by rewriting the equation as $x = \ln 5$. This says that x is the exponent to which base e is raised to equal 5.

To estimate the size of $\ln 5$, remember that e is about 2.7. Because 5 is greater than e^1 , this means that $\ln 5$ is greater than 1. e^2 is about $(2.7)^2$ or 7.3. Because 5 is less than e^2 , this means that $\ln 5$ is less than 2. This suggests that $\ln 5$ is between 1 and 2. Using a calculator we can check that $\ln 5 \approx 1.61$.