# Unit 2 Lesson 12: Polynomial Division (Part 1)

## **1 Notice and Wonder: A Different Use for Diagrams (Warm up)** Student Task Statement

What do you notice? What do you wonder?

A. 
$$(x-3)(x+5) = x^2 + 2x - 15$$

|    | x     | 5          |
|----|-------|------------|
| x  | $x^2$ | 5 <i>x</i> |
| -3 | -3x   | -15        |

|    | $x^2$                 | 3 <i>x</i> | -4          |
|----|-----------------------|------------|-------------|
| x  | <i>x</i> <sup>3</sup> | $3x^{2}$   | -4 <i>x</i> |
| -1 | $-x^2$                | -3x        | +4          |

B.  $(x-1)(x^2 + 3x - 4) = x^3 + 2x^2 - 7x + 4$ 

C.  $(x-2)(?) = (x^3 - x^2 - 4x + 4)$ 

| x  | <i>x</i> <sup>3</sup> |  |
|----|-----------------------|--|
| -2 |                       |  |

## 2 Factoring with Diagrams

#### Student Task Statement

Priya wants to sketch a graph of the polynomial f defined by  $f(x) = x^3 + 5x^2 + 2x - 8$ . She knows f(1) = 0, so she suspects that (x - 1) could be a factor of  $x^3 + 5x^2 + 2x - 8$  and writes  $(x^3 + 5x^2 + 2x - 8) = (x - 1)(2x^2 + 2x + 2)$  and draws a diagram.



- 1. Finish Priya's diagram.
- 2. Write f(x) as the product of (x 1) and another factor.
- 3. Write f(x) as the product of three linear factors.

4. Make a sketch of 
$$y = f(x)$$
.



### **3 More Factoring with Diagrams**

#### **Student Task Statement**

Here are some polynomial functions with known factors. Rewrite each polynomial as a product of linear factors. Note: you may not need to use all the columns in each diagram. For some problems, you may need to make another diagram.

1. 
$$A(x) = x^3 - 7x^2 - 16x + 112$$
,  $(x - 7)$ 

|    | $x^2$                 |   |  |  |
|----|-----------------------|---|--|--|
| x  | <i>x</i> <sup>3</sup> | 0 |  |  |
| -7 | $-7x^2$               |   |  |  |

2. 
$$B(x) = 2x^3 - x^2 - 27x + 36, \left(x - \frac{3}{2}\right)$$

|                | $2x^2$   |          |  |  |
|----------------|----------|----------|--|--|
| x              | $2x^{3}$ | $2x^{2}$ |  |  |
| $-\frac{3}{2}$ | $-3x^2$  |          |  |  |

3.  $C(x) = x^3 - 3x^2 - 13x + 15$ , (x + 3)

| x |  |  |  |
|---|--|--|--|
| 3 |  |  |  |

4.  $D(x) = x^4 - 13x^2 + 36$ , (x - 2), (x + 2)

(Hint:  $x^4 - 13x^2 + 36 = x^4 + 0x^3 - 13x^2 + 0x + 36$ )

5.  $F(x) = 4x^4 - 15x^3 - 48x^2 + 109x + 30$ , (x - 5), (x - 2), (x + 3)