Unit 3 Lesson 17: Completing the Square and **Complex Solutions**

1 Creating Quadratic Equations (Warm up)

Student Task Statement

Match each equation in standard form to its factored form and its solutions.

1.
$$x^2 - 25 = 0$$

•
$$(x - 5i)(x + 5i) = 0$$
 • $\sqrt{5}$, $-\sqrt{5}$

•
$$\sqrt{5}$$
, $-\sqrt{5}$

2.
$$x^2 - 5 = 0$$

2.
$$x^2 - 5 = 0$$
 • $(x - 5)(x + 5) = 0$ • $5, -5$

3.
$$x^2 + 25 = 0$$

3.
$$x^2 + 25 = 0$$
 • $(x - \sqrt{5})(x + \sqrt{5}) = 0$ • $5i$, $-5i$

2 Sometimes the Solutions Aren't Real Numbers

Student Task Statement

What are the solutions to these equations?

$$1. (x - 5)^2 = 0$$

$$2. (x - 5)^2 = 1$$

3.
$$(x-5)^2 = -1$$

3 Finding Complex Solutions

Student Task Statement

Solve these equations by completing the square.

$$1. x^2 - 8x + 13 = 0$$

$$2. x^2 - 8x + 19 = 0$$

4 Can You See the Solutions on a Graph? (Optional)

Student Task Statement

1. How many real solutions does each equation have? How many non-real solutions?

a.
$$x^2 - 8x + 13 = 0$$

b.
$$x^2 - 8x + 16 = 0$$

c.
$$x^2 - 8x + 19 = 0$$

2. How do the graphs of these functions help us answer the previous question? a. $f(x) = x^2 - 8x + 13$

a.
$$f(x) = x^2 - 8x + 13$$

b.
$$g(x) = x^2 - 8x + 16$$

c.
$$h(x) = x^2 - 8x + 19$$