Lesson 5 Practice Problems

1. This diagram is a straightedge and compass construction of a line perpendicular to line $A B$ passing through point C. Explain why it was helpful to construct points D and A to be the same distance from C.

2. This diagram is a straightedge and compass construction.

Select all true statements.

A. Line $E F$ is the bisector of angle $B A C$.
B. Line $E F$ is the perpendicular bisector of segment $B A$.
C. Line $E F$ is the perpendicular bisector of segment $A C$.
D. Line $E F$ is the perpendicular bisector of segment $B D$.
E. Line $E F$ is parallel to line $C D$.
3. This diagram is a straightedge and compass construction. A is the center of one circle, and B is the center of the other. A rhombus is a quadrilateral with 4 congruent sides. Explain why quadrilateral $A C B D$ is a rhombus.

(From Unit 1, Lesson 4.)
4. A, B, and C are the centers of the three circles. Which line segment is congruent to $H F$?

A. $A B$
B. $C D$
C. $D F$
D. $C B$
(From Unit 1, Lesson 4.)
5. In the construction, A is the center of one circle, and B is the center of the other. Explain why segment $E A$ is the same length as segment $B C$.

(From Unit 1, Lesson 2.)

6. $A B \perp C D$

In this diagram, line segment $C D$ is the perpendicular bisector of line segment $A B$. Assume the conjecture that the set of points equidistant from A and B is the perpendicular bisector of $A B$ is true. Is point M closer to point A, closer to point B, or the same distance from both points? Explain how you know.
(From Unit 1, Lesson 3.)
7. A sheet of paper with points A and B is folded so that A and B match up with each other.

Explain why the crease in the sheet of paper is the perpendicular bisector of segment $A B$. (Assume the conjecture that the set of points equidistant from A and B is the perpendicular bisector of segment $A B$ is true.)
(From Unit 1, Lesson 3.)
8. Here is a diagram of a straightedge and compass construction. C is the center of one circle, and B is the center of the other. Explain why the length of segment $C B$ is the same as the length of segment $C D$.

(From Unit 1, Lesson 1.)

