Unit 3 Lesson 18: The Quadratic Formula and Complex Solutions

1 Math Talk: Real or Not? (Warm up)

Student Task Statement

Mentally decide whether the solutions to each equation are real numbers or not.

$$w^2 = -367$$

$$x^2 + 25 = 0$$

$$(y+5)^2 = 0$$

$$(z+5)^2 = -367$$

2 Be Discriminating

Student Task Statement

Kiran was using the quadratic formula to solve the equation $x^2 - 12x + 41 = 0$. He wrote this:

$$x = \frac{12 \pm \sqrt{144 - 164}}{2}$$

Then he noticed that the number inside the square root is negative and said, "This equation doesn't have any solutions."

- 1. Do you agree with Kiran? Explain your reasoning.
- 2. Write $\sqrt{-20}$ as an imaginary number.

3. Solve the equation $3x^2 - 10x + 50 = 0$ and plot the solutions in the complex plane.

3 Solving All Kinds of Quadratics

Student Task Statement

For each row, you and your partner will each solve a quadratic equation. You should each get the same answer. If you disagree, work to reach agreement.

partner A	partner B
$x^2 - 4x - 4 = 0$	$(x-2)^2 = 8$
$(y-2)^2 = -8$	$y^2 - 4y + 12 = 0$
$(z + \frac{3}{2})^2 = -\frac{29}{4}$	$2z^2 + 6z = -19$
$w^2 + 3w = 5$	$(w + \frac{3}{2})^2 = \frac{29}{4}$
$4t^2 - 20t + 25 = 0$	$4(t^2 - 5t) = -25$