## Lesson 2: Transformations as Functions

- Let's compare transformations to functions.


## 2.1: Math Talk: Transforming a Point

Mentally find the coordinates of the image of $A$ under each transformation.


- Translate $A$ by the directed line segment from $(0,0)$ to $(0,2)$.
- Translate $A$ by the directed line segment from $(0,0)$ to $(-4,0)$.
- Reflect $A$ across the $x$-axis.
- Rotate $A 180$ degrees clockwise using the origin as a center.


## 2.2: Inputs and Outputs



1. For each point $(x, y)$, find its image under the transformation $(x+12, y-2)$.
a. $A=(-10,5)$
b. $B=(-4,9)$
c. $C=(-2,6)$
2. Next, sketch triangle $A B C$ and its image on the grid. What transformation is $(x, y) \rightarrow(x+12, y-2) ?$
3. For each point $(x, y)$ in the table, find $(2 x, 2 y)$.

| $(x, y)$ | $(2 x, 2 y)$ |
| :---: | :---: |
| $(-1,-3)$ |  |
| $(-1,1)$ |  |
| $(5,1)$ |  |
| $(5,-3)$ |  |

4. Next, sketch the original figure (the $(x, y)$ column) and image (the $(2 x, 2 y)$ column). What transformation is $(x, y) \rightarrow(2 x, 2 y)$ ?

## 2.3: What Does it Do?



1. Here are some transformation rules. Apply each rule to quadrilateral $A B C D$ and graph the resulting image. Then describe the transformation.
a. Label this transformation $Q:(x, y) \rightarrow(2 x, y)$
b. Label this transformation $R:(x, y) \rightarrow(x,-y)$
c. Label this transformation $S:(x, y) \rightarrow(y,-x)$

## Are you ready for more?



1. Plot the quadrilateral with vertices $(4,-2),(8,4),(8,-6)$, and $(-6,-6)$. Label this quadrilateral $A$.
2. Plot the quadrilateral with vertices $(-2,4),(4,8),(-6,8)$, and $(-6,-6)$. Label this quadrilateral $A^{\prime}$.
3. How are the coordinates of quadrilateral $A$ related to the coordinates of quadrilateral $A^{\prime}$ ?
4. What single transformation takes quadrilateral $A$ to quadrilateral $A^{\prime}$ ?

## Lesson 2 Summary

Square $A B C D$ has been translated by the directed line segment from $(-1,1)$ to $(4,0)$. The result is square $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.


Here is a list of coordinates in the original figure and corresponding coordinates in the image. Do you see the rule for taking points in the original figure to points in the image?

| original figure | image |
| :---: | :---: |
| $A=(-1,1)$ | $A^{\prime}=(4,0)$ |
| $B=(1,1)$ | $B^{\prime}=(6,0)$ |
| $C=(1,-1)$ | $C^{\prime}=(6,-2)$ |
| $D=(-1,-1)$ | $D^{\prime}=(4,-2)$ |
| $Q=(-0.5,1)$ | $Q^{\prime}=(4.5,0)$ |

This table looks like a table that shows corresponding inputs and outputs of a function. A transformation is a special type of function that takes points in the plane as inputs and gives other points as outputs. In this case, the function's rule is to add 5 to the $x$-coordinate and subtract 1 from the $y$-coordinate.

We write the rule this way:
$(x, y) \rightarrow(x+5, y-1)$.

