Lesson 15: Weighted Averages

- Let's split segments using averages and ratios.

15.1: Part Way: Points

For the questions in this activity, use the coordinate grid if it is helpful to you.

1. What is the midpoint of the segment connecting $(1,2)$ and $(5,2)$?
2. What is the midpoint of the segment connecting $(5,2)$ and $(5,10)$?
3. What is the midpoint of the segment connecting $(1,2)$ and $(5,10)$?

15.2: Part Way: Segment

Point \boldsymbol{A} has coordinates $(2,4)$. Point \boldsymbol{B} has coordinates $(8,1)$.

1. Find the point that partitions segment $A B$ in a $2: 1$ ratio.
2. Calculate $C=\frac{1}{3} A+\frac{2}{3} B$.
3. What do you notice about your answers to the first 2 questions?
4. For 2 new points K and L, write an expression for the point that partitions segment $K L$ in a $3: 1$ ratio.

Are you ready for more?

Consider the general quadrilateral $Q R S T$ with $Q=(0,0), R=(a, b), S=(c, d)$, and $T=(e, f)$.

1. Find the midpoints of each side of this quadrilateral.
2. Show that if these midpoints are connected consecutively, the new quadrilateral formed is a parallelogram.

15.3: Part Way: Quadrilateral

Here is quadrilateral $A B C D$.

1. Find the point that partitions segment $A B$ in a $1: 4$ ratio. Label it B^{\prime}.
2. Find the point that partitions segment $A D$ in a $1: 4$ ratio. Label it D^{\prime}.
3. Find the point that partitions segment $A C$ in a $1: 4$ ratio. Label it C^{\prime}.
4. Is $A B^{\prime} C^{\prime} D^{\prime}$ a dilation of $A B C D$? Justify your answer.

Lesson 15 Summary

To find the midpoint of a line segment, we can average the coordinates of the endpoints. For example, to find the midpoint of the segment from $A=(0,4)$ to $B=(6,7)$, average the coordinates of A and $B:\left(\frac{0+6}{2}, \frac{4+7}{2}\right)=(3,5.5)$. Another way to write what we just did is $\frac{1}{2}(A+B)$ or $\frac{1}{2} A+\frac{1}{2} B$.

Now, let's find the point that is $\frac{2}{3}$ of the way from A to B. In other words, we'll find point C so that segments $A C$ and $C B$ are in a $2: 1$ ratio.

In the horizontal direction, segment $A B$ stretches from $x=0$ to $x=6$. The distance from 0 to 6 is 6 units, so we calculate $\frac{2}{3}$ of 6 to get 4. Point C will be 4 horizontal units away from A, which means an x-coordinate of 4 .

In the vertical direction, segment $A B$ stretches from $y=4$ to $y=7$. The distance from 4 to 7 is 3 units, so we can calculate $\frac{2}{3}$ of 3 to get 2. Point C must be 2 vertical units away from A, which means a y-coordinate of 6 .

It is possible to do this all at once by saying $C=\frac{1}{3} A+\frac{2}{3} B$. This is called a weighted average. Instead of finding the point in the middle, we want to find a point closer to B than to A. So we give point B more weight-it has a coefficient of $\frac{2}{3}$ rather than $\frac{1}{2}$ as in the midpoint calculation. To calculate $C=\frac{1}{3} A+\frac{2}{3} B$, substitute and evaluate.
$\frac{1}{3} A+\frac{2}{3} B$
$\frac{1}{3}(0,4)+\frac{2}{3}(6,7)$
$\left(0, \frac{4}{3}\right)+\left(4, \frac{14}{3}\right)$
$(4,6)$
Either way, we found that the coordinates of C are $(4,6)$.

