Lesson 13 Practice Problems

1. Here are 2 polygons:

Select all sequences of translations, rotations, and reflections below that would take polygon P to polygon Q.

A. Rotate 180° around point A.
B. Rotate 60° counterclockwise around point A and then reflect over the line $F A$.
C. Translate so that A is taken to J. Then reflect over line $B A$.
D. Reflect over line $B A$ and then translate by directed line segment $B A$.
E. Reflect over the line $B A$ and then rotate 60° counterclockwise around point A.
2. The semaphore alphabet is a way to use flags to signal

Q messages. Here's how to signal the letter Q. Describe a transformation that would take the left hand flag to the right hand flag.

3. Match the directed line segment with the image of Polygon P being transformed to Polygon Q by translation by that directed line segment.

Translation 1
Translation 2

A.
$\xrightarrow{ }$ •
B.

C.

D.

1. Translation 1
2. Translation 2
3. Translation 3
4. Translation 4
(From Unit 1, Lesson 12.)
5. Draw the image of quadrilateral $A B C D$ when translated by the directed line segment v. Label the image of A as A^{\prime}, the image of B as B^{\prime}, the image of C as C^{\prime}, and the image of D as D^{\prime}.

(From Unit 1, Lesson 12.)
6. Here is a line ℓ.

Plot 2 points, A and B, which stay in the same place when they are reflected over ℓ. Plot 2 other points, C and D, which move when they are reflected over ℓ.

(From Unit 1, Lesson 11.)
6. Here are 3 points in the plane. Select all the straightedge and compass constructions needed to locate the point that is the same distance from all 3 points.
A. Construct the bisector of angle $C A B$.
B. Construct the bisector of angle $C B A$.
C. Construct the perpendicular bisector of $B C$.
D. Construct the perpendicular bisector of $A B$.
E. Construct a line perpendicular to $A B$ through point C.
F. Construct a line perpendicular to $B C$ through point A.
7. This straightedge and compass construction shows quadrilateral $A B C D$. Is $A B C D$ a rhombus? Explain how you know.

(From Unit 1, Lesson 7.)

