Unit 6 Lesson 8: Equivalent Quadratic Expressions

1 Diagrams of Products (Warm up)

Student Task Statement

> 1. Explain why the diagram shows that $6(3+4)=6 \cdot 3+6 \cdot 4$.
> 2. Draw a diagram to show that $5(x+2)=5 x+10$.

2 Drawing Diagrams to Represent More Products

Student Task Statement

Applying the distributive property to multiply out the factors of, or expand, $4(x+2)$ gives us $4 x+8$, so we know the two expressions are equivalent. We can use a rectangle with side lengths $(x+2)$ and 4 to illustrate the multiplication.

1. Draw a diagram to show that $n(2 n+5)$ and $2 n^{2}+5 n$ are equivalent expressions.
2. For each expression, use the distributive property to write an equivalent expression. If you get stuck, consider drawing a diagram.
a. $6\left(\frac{1}{3} n+2\right)$
b. $p(4 p+9)$
c. $5 r\left(r+\frac{3}{5}\right)$
d. $(0.5 w+7) w$

3 Using Diagrams to Find Equivalent Quadratic Expressions

Student Task Statement

1. Here is a diagram of a rectangle with side lengths $x+1$ and $x+3$. Use this diagram to show that $(x+1)(x+3)$ and $x^{2}+4 x+3$ are equivalent expressions.

2. Draw diagrams to help you write an equivalent expression for each of the following:
a. $(x+5)^{2}$
b. $2 x(x+4)$
c. $(2 x+1)(x+3)$
d. $(x+m)(x+n)$
3. Write an equivalent expression for each expression without drawing a diagram:
a. $(x+2)(x+6)$
b. $(x+5)(2 x+10)$

Activity Synthesis

$$
\begin{aligned}
& x(x+2)(x+6) \\
= & x^{2}+6 x+2 x+(2)(6) \\
= & x^{2}+(6+2) x+(2)(6)
\end{aligned}
$$

