Lesson 9 Practice Problems

1. Here are graphs of functions f and g. For each, determine the value of k so that $g(x)=f(k x)$.

2. Let $f(x)=x(x-5)(x+2)(x+5)$. Decide if the reasoning about each of the following functions is correct. Explain your reasoning.
a. Andre says that $g(x)=0.1 x(0.1 x-5)(0.1 x+2)(0.1 x+5)$ is obtained from f by scaling the inputs by a factor of 0.1.
b. Clare says this graph is a vertical shift of the graph of f down 100 units.

c. Diego says the graph of $k(x)=-x(x-5)(x+2)(x+5)$ is the reflection of the graph of f over the y-axis.
3. A bacteria population, in thousands, is modeled by the function $f(d)=30 \cdot 2^{d}$ where d is the number of days since it was first measured. The function g gives the bacteria population, in thousands, w weeks after it was first measured. Express g in terms of f. Explain your reasoning.
4. The height of a hot air balloon, in feet, m minutes after takeoff is modeled by the function $f(m)=16 \mathrm{~m}$.
a. How many minutes does it take for the balloon to reach 200 feet?
b. Another balloon takes off 5 minutes later and rises at the same speed. Write an equation for the function g, where $g(t)$ is the height, in feet, of this balloon in terms of m. Explain your reasoning.
c. Sketch graphs of the two functions f and g.

(From Unit 5, Lesson 3.)
5. Here is the graph of a function f.

Reflecting f across the x-axis and then across the vertical line $y=1$ takes the graph of f back to itself. Tyler says that this means f is an odd function. Do you agree with Tyler? Explain your reasoning.
(From Unit 5, Lesson 5.)
6. The population of sloths in an area has been increasing by 5% each year since 2000. Let P model the population $P(t)$, in thousands, of sloths t years after the year 2000. The graph of $p(t)=1.05^{t}$ has a general shape that fits the data. Find a scale factor k so that $P(t)=k p(t)$ fits the data.

years (since 2000)	population (in thousands)
5	15.7
8	18.2
10	20.0
12	22.1
15	25.6
19	33.1

(From Unit 5, Lesson 8.)

