Unit 7 Lesson 21: Sums and Products of Rational and Irrational Numbers

1 Operations on Integers (Warm up)

Student Task Statement

Here are some examples of integers:

-25 -10 -2 -1 0 5 9 40

- 1. Experiment with adding any two numbers from the list (or other integers of your choice). Try to find one or more examples of two integers that:
 - a. add up to another integer
 - b. add up to a number that is not an integer
- 2. Experiment with multiplying any two numbers from the list (or other integers of your choice). Try to find one or more examples of two integers that:
 - a. multiply to make another integer
 - b. multiply to make a number that is not an integer

2 Sums and Products of Rational Numbers

Student Task Statement

1. Here are a few examples of adding two rational numbers. Is each sum a rational number? Be prepared to explain how you know.

a.
$$4 + 0.175 = 4.175$$

b. $\frac{1}{2} + \frac{4}{5} = \frac{5}{10} + \frac{8}{10} = \frac{13}{10}$
c. $-0.75 + \frac{14}{8} = \frac{-6}{8} + \frac{14}{8} = \frac{8}{8} = 1$
d. *a* is an integer: $\frac{2}{3} + \frac{a}{15} = \frac{10}{15} + \frac{a}{15} = \frac{10+a}{15}$

2. Here is a way to explain why the sum of two rational numbers is rational.

Suppose $\frac{a}{b}$ and $\frac{c}{d}$ are fractions. That means that a, b, c, and d are integers, and b and d are not 0.

- a. Find the sum of $\frac{a}{b}$ and $\frac{c}{d}$. Show your reasoning.
- b. In the sum, are the numerator and the denominator integers? How do you know?
- c. Use your responses to explain why the sum of $\frac{a}{b} + \frac{c}{d}$ is a rational number.
- 3. Use the same reasoning as in the previous question to explain why the product of two rational numbers, $\frac{a}{b} \cdot \frac{c}{d}$, must be rational.

3 Sums and Products of Rational and Irrational Numbers

Student Task Statement

- 1. Here is a way to explain why $\sqrt{2} + \frac{1}{9}$ is irrational.
 - Let *s* be the sum of $\sqrt{2}$ and $\frac{1}{9}$, or $s = \sqrt{2} + \frac{1}{9}$.
 - Suppose *s* is rational.
 - a. Would $s + -\frac{1}{9}$ be rational or irrational? Explain how you know.
 - b. Evaluate $s + -\frac{1}{9}$. Is the sum rational or irrational?
 - c. Use your responses so far to explain why s cannot be a rational number, and therefore $\sqrt{2} + \frac{1}{9}$ cannot be rational.
- 2. Use the same reasoning as in the earlier question to explain why $\sqrt{2} \cdot \frac{1}{9}$ is irrational.

4 Equations with Different Kinds of Solutions (Optional)

Student Task Statement

1. Consider the equation $4x^2 + bx + 9 = 0$. Find a value of *b* so that the equation has:

- a. 2 rational solutions
- b. 2 irrational solutions
- c. 1 solution
- d. no solutions
- 2. Describe all the values of *b* that produce 2, 1, and no solutions.
- 3. Write a new quadratic equation with each type of solution. Be prepared to explain how you know that your equation has the specified type and number of solutions.
 - a. no solutions
 - b. 2 irrational solutions
 - c. 2 rational solutions
 - d. 1 solution