Unit 7 Lesson 16: The Quadratic Formula

1 Evaluate It (Warm up)

Student Task Statement

Each expression represents two numbers. Evaluate the expressions and find the two numbers.

1. $1 \pm \sqrt{49}$
2. $\frac{8 \pm 2}{5}$
3. $\pm \sqrt{(-5)^{2}-4 \cdot 4 \cdot 1}$
4. $\frac{-18 \pm \sqrt{36}}{2 \cdot 3}$

2 Pesky Equations

Student Task Statement

Choose one equation to solve, either by rewriting it in factored form or by completing the square. Be prepared to explain your choice of method.

1. $x^{2}-2 x-1.25=0$
2. $5 x^{2}+9 x-44=0$
3. $x^{2}+1.25 x=0.375$
4. $4 x^{2}-28 x+29=0$

3 Meet the Quadratic Formula

Student Task Statement

Here is a formula called the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The formula can be used to find the solutions to any quadratic equation in the form of $a x^{2}+b x+c=0$, where a, b, and c are numbers and a is not 0 .

This example shows how it is used to solve $x^{2}-8 x+15=0$, in which $a=1, b=-8$, and $c=15$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { original equation } \\
& x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(15)}}{2(1)} \quad \text { substitute the values of } a, b \text {, and } c \\
& x=\frac{8 \pm \sqrt{64-60}}{2} \quad \text { evaluate each part of the expression } \\
& x=\frac{8 \pm \sqrt{4}}{2} \\
& x=\frac{8 \pm 2}{2} \\
& x=\frac{10}{2} \quad \text { or } \quad x=\frac{6}{2} \\
& x=5 \quad \text { or } \quad x=3
\end{aligned}
$$

Here are some quadratic equations and their solutions. Use the quadratic formula to show that the solutions are correct.

1. $x^{2}+4 x-5=0$. The solutions are $x=-5$ and $x=1$.
2. $x^{2}+7 x+12=0$. The solutions are $x=-3$ and $x=-4$.
3. $x^{2}+10 x+18=0$. The solutions are $x=-5 \pm \frac{\sqrt{28}}{2}$.
4. $x^{2}-8 x+11=0$. The solutions are $x=4 \pm \frac{\sqrt{20}}{2}$.
5. $9 x^{2}-6 x+1=0$. The solution is $x=\frac{1}{3}$.
6. $6 x^{2}+9 x-15=0$. The solutions are $x=-\frac{5}{2}$ and $x=1$.
