Unit 7 Lesson 12: Completing the Square (Part 1)

1 Perfect or Imperfect? (Warm up)

Student Task Statement

Select **all** expressions that are perfect squares. Explain how you know.

1.
$$(x + 5)(5 + x)$$

2. $(x + 5)(x - 5)$
3. $(x - 3)^2$
4. $x - 3^2$
5. $x^2 + 8x + 16$
6. $x^2 + 10x + 20$

2 Building Perfect Squares

Student Task Statement

standard form	factored form
1. $x^2 + 6x + 9$	
2. $x^2 - 10x + 25$	
3.	$(x - 7)^2$
4. $x^2 - 20x + $	$(x)^2$
5. $x^2 + 16x + $	$(x +)^2$
6. $x^2 + 7x + $	$(x +)^2$
7. $x^2 + bx +$	$(x + \)^2$

Complete the table so that each row has equivalent expressions that are perfect squares.

3 Dipping Our Toes in Completing the Square

Student Task Statement

One technique for solving quadratic equations is called **completing the square**. Here are two examples of how Diego and Mai completed the square to solve the same equation.

Diego:

Mai:

$$x^{2} + 10x + 9 = 0$$

$$x^{2} + 10x = -9$$

$$x^{2} + 10x + 25 = -9 + 25$$

$$x^{2} + 10x + 25 = 16$$

$$(x + 5)^{2} = 16$$

$$x + 5 = 4 \text{ or } x + 5 = -4$$

$$x = -1 \text{ or } x = -9$$

$$x^{2} + 10x + 9 = 0$$

$$x^{2} + 10x + 9 = 0$$

$$x^{2} + 10x + 9 = 16$$

$$x^{2} + 10x + 25 = 16$$

$$(x + 5)^{2} = 16$$

$$x + 5 = 4 \text{ or } x + 5 = -4$$

$$x = -1 \text{ or } x = -9$$

Study the worked examples. Then, try solving these equations by completing the square:

1.
$$x^{2} + 6x + 8 = 0$$

2. $x^{2} + 12x = 13$
3. $0 = x^{2} - 10x + 21$

4. $x^2 - 2x + 3 = 83$ 5. $x^2 + 40 = 14x$