Unit 7 Lesson 12: Completing the Square (Part 1)

1 Perfect or Imperfect? (Warm up)

Student Task Statement

Select all expressions that are perfect squares. Explain how you know.

1. $(x+5)(5+x)$
2. $(x+5)(x-5)$
3. $(x-3)^{2}$
4. $x-3^{2}$
5. $x^{2}+8 x+16$
6. $x^{2}+10 x+20$

2 Building Perfect Squares

Student Task Statement

Complete the table so that each row has equivalent expressions that are perfect squares.

standard form	factored form
1. $x^{2}+6 x+9$	
2. $x^{2}-10 x+25$	$(x-7)^{2}$
3.	$\left(x-Z^{2}\right.$
4. $x^{2}-20 x+$	$(x+)^{2}$
5. $x^{2}+16 x+$	$(x+\ldots)^{2}$
6. $x^{2}+7 x+$	$(x+\ldots)^{2}$
7. $x^{2}+b x+$	

3 Dipping Our Toes in Completing the Square

Student Task Statement

One technique for solving quadratic equations is called completing the square. Here are two examples of how Diego and Mai completed the square to solve the same equation.

Diego:

$$
\begin{aligned}
x^{2}+10 x+9 & =0 \\
x^{2}+10 x & =-9 \\
x^{2}+10 x+25 & =-9+25 \\
x^{2}+10 x+25 & =16 \\
(x+5)^{2} & =16 \\
x+5=4 & \text { or } \quad x+5=-4 \\
x=-1 & \text { or } \quad x=-9
\end{aligned}
$$

Mai:

$$
\begin{aligned}
x^{2}+10 x+9 & =0 \\
x^{2}+10 x+9+16 & =16 \\
x^{2}+10 x+25 & =16 \\
(x+5)^{2} & =16 \\
x+5=4 & \text { or } \quad x+5=-4 \\
x=-1 & \text { or } \quad x=-9
\end{aligned}
$$

Study the worked examples. Then, try solving these equations by completing the square:

1. $x^{2}+6 x+8=0$
2. $x^{2}+12 x=13$
3. $0=x^{2}-10 x+21$
4. $x^{2}-2 x+3=83$
5. $x^{2}+40=14 x$
