Lesson 13 Practice Problems

1. Write each number in scientific notation.
a. 14,700
b. 0.00083
c. $760,000,000$
d. 0.038
e. 0.38
f. 3.8
g. 3,800,000,000,000
h. 0.0000000009
2. Perform the following calculations. Express your answers in scientific notation.
a. $\left(2 \times 10^{5}\right)+\left(6 \times 10^{5}\right)$
b. $\left(4.1 \times 10^{7}\right) \cdot 2$
c. $\left(1.5 \times 10^{11}\right) \cdot 3$
d. $\left(3 \times 10^{3}\right)^{2}$
e. $\left(9 \times 10^{6}\right) \cdot\left(3 \times 10^{6}\right)$
3. Jada is making a scale model of the solar system. The distance from Earth to the Moon is about 2.389×10^{5} miles. The distance from Earth to the Sun is about 9.296×10^{7} miles. She decides to put Earth on one corner of her dresser and the Moon on another corner, about a foot away. Where should she put the sun?

- On a windowsill in the same room?
- In her kitchen, which is down the hallway?
- A city block away?

Explain your reasoning.
4. Here is the graph for one equation in a system of equations.

a. Write a second equation for the system so it has infinitely many solutions.
b. Write a second equation whose graph goes through $(0,2)$ so that the system has no solutions.
c. Write a second equation whose graph goes through $(2,2)$ so that the system has one solution at $(4,3)$.
(From Unit 4, Lesson 12.)

