Unit 7 Lesson 8: Rewriting Quadratic Expressions inFactored Form (Part 3)
1 Math Talk: Products of Large-ish Numbers (Warm up)
Student Task Statement
Find each product mentally.
$9 \cdot 11$
$19 \cdot 21$99•101
$109 \cdot 101$

2 Can Products Be Written as Differences?

Student Task Statement

1. Clare claims that $(10+3)(10-3)$ is equivalent to $10^{2}-3^{2}$ and $(20+1)(20-1)$ is equivalent to $20^{2}-1^{2}$. Do you agree? Show your reasoning.
2. a. Use your observations from the first question and evaluate $(100+5)(100-5)$. Show your reasoning.
b. Check your answer by computing $105 \cdot 95$.
3. Is $(x+4)(x-4)$ equivalent to $x^{2}-4^{2}$? Support your answer:

With a diagram:

	x	4
x		
-4		

4. Is $(x+4)^{2}$ equivalent to $x^{2}+4^{2}$? Support your answer, either with or without a diagram.

3 What If There is No Linear Term?

Student Task Statement

Each row has a pair of equivalent expressions.
Complete the table.
If you get stuck, consider drawing a diagram.
(Heads up: one of them is impossible.)

factored form	standard form
$(x-10)(x+10)$	
$(2 x+1)(2 x-1)$	
$(4-x)(4+x)$	
	$x^{2}-81$
	$49-y^{2}$
	$9 z^{2}-16$
	$25 t^{2}-81$
$\left(c+\frac{2}{5}\right)\left(c-\frac{2}{5}\right)$	$\frac{49}{16}-d^{2}$
	$x^{2}-6$
$(x+5)(x+5)$	$x^{2}+100$

