Unit 7 Lesson 8: Rewriting Quadratic Expressions in Factored Form (Part 3)

1 Math Talk: Products of Large-ish Numbers (Warm up)

Student Task Statement

Find each product mentally.

9 • 11

19 · 21

99 · 101

109 • 101

2 Can Products Be Written as Differences?

Student Task Statement

- 1. Clare claims that (10 + 3)(10 3) is equivalent to $10^2 3^2$ and (20 + 1)(20 1) is equivalent to $20^2 1^2$. Do you agree? Show your reasoning.
- 2. a. Use your observations from the first question and evaluate (100 + 5)(100 5). Show your reasoning.
 - b. Check your answer by computing $105 \cdot 95$.

3. Is (x + 4)(x - 4) equivalent to $x^2 - 4^2$? Support your answer:

With a diagram:

Without a diagram:

	x	4
x		
-4		

4. Is $(x + 4)^2$ equivalent to $x^2 + 4^2$? Support your answer, either with or without a diagram.

3 What If There is No Linear Term?

Student Task Statement

Each row has a pair of equivalent expressions.

Complete the table.

If you get stuck, consider drawing a diagram. (Heads up: one of them is impossible.)

factored form	standard form
(x - 10)(x + 10)	
(2x+1)(2x-1)	
(4-x)(4+x)	
	$x^2 - 81$
	$49 - y^2$
	$9z^2 - 16$
	$25t^2 - 81$
$(c + \frac{2}{5})(c - \frac{2}{5})$	
	$\frac{49}{16} - d^2$
(x+5)(x+5)	
	$x^2 - 6$
	$x^2 + 100$