Lesson 11 Practice Problems

1. Which of the following criteria always proves triangles congruent? Select all that apply.
A. 3 congruent angles
B. 3 congruent sides
C. Corresponding congruent Side-Angle-Side
D. Corresponding congruent Side-Side-Angle
E. Corresponding congruent Angle-Side-Angle
2. Here are some measurements for triangle $A B C$ and triangle $X Y Z$:

- Angle $A B C$ and angle $X Y Z$ are both 30°
- $B C$ and $Y Z$ both measure 6 units
${ }^{\circ} C A$ and $Z X$ both measure 4 units
Lin thinks thinks these triangles must be congruent. Priya says she knows they might not be congruent. Construct 2 triangles with the given measurements that aren't congruent. Explain why triangles with 3 congruent parts aren't necessarily congruent.

3. Jada states that diagonal $W Y$ bisects angles $Z W X$ and $Z Y X$. Is she correct? Explain your reasoning,

4. Select all true statements based on the diagram.

A. Angle $C B E$ is congruent to angle $D A E$.
B. Angle $C E B$ is congruent to angle $D E A$.
C. Segment $D A$ is congruent to segment $C B$.
D. Segment $D C$ is congruent to segment $A B$.
E. Line $D C$ is parallel to line $A B$.
F. Line $D A$ is parallel to line $C B$.
(From Unit 2, Lesson 10.)
5. $W X Y Z$ is a kite. Angle $W X Y$ has a measure of 94 degrees and angle $Z W X$ has a measure of 112 degrees. Find the measure of angle $Z Y W$.

(From Unit 2, Lesson 9.)
6. Andre is thinking through a proof using a reflection to show that a triangle is isosceles given that its base angles are congruent. Complete the missing information for his proof.

Construct $A B$ such that $A B$ is the perpendicular bisector of segment $C D$. We know angle $A D B$ is congruent to \qquad . $D B$ is congruent to
\qquad since $A B$ is the perpendicular bisector of $C D$.
Angle \qquad is congruent to angle \qquad because they are both right angles. Triangle $A B C$ is congruent to triangle \qquad because of the \qquad Triangle Congruence Theorem. $A D$ is congruent to \qquad because they are corresponding parts of congruent triangles. Therefore, triangle $A D C$ is an isosceles triangle.
(From Unit 2, Lesson 8.)
7. The triangles are congruent. Which sequence of rigid motions takes triangle $D E F$ onto triangle BAC?

A. Translate $D E F$ using directed line segment $E A$. Rotate $D^{\prime} E^{\prime} F^{\prime}$ using A as the center so that D^{\prime} coincides with C. Reflect $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ across line $A C$.
B. Translate $D E F$ using directed line segment $E A$. Rotate $D^{\prime} E^{\prime} F^{\prime}$ using A as the center so that D^{\prime} coincides with C. Reflect $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ across line $A B$.
C. Translate $D E F$ using directed line segment $E A$. Rotate $D^{\prime} E^{\prime} F^{\prime}$ using A as the center so that D^{\prime} coincides with B. Reflect $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ across line $A C$.
D. Translate $D E F$ using directed line segment $E A$. Rotate $D^{\prime} E^{\prime} F^{\prime}$ using A as the center so that D^{\prime} coincides with B. Reflect $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ across line $A B$.

