Lesson 18: Expressions with Rational Numbers

Let's develop our signed number sense.

18.1: True or False: Rational Numbers

Decide if each statement is true or false. Be prepared to explain your reasoning.

- 1. (-38.76)(-15.6) is negative
- 2. 10,000 99,999 < 0
- $3. \left(\frac{3}{4}\right) \left(-\frac{4}{3}\right) = 0$

4. (30)(-80) - 50 = 50 - (30)(-80)

18.2: Card Sort: The Same But Different

Your teacher will give you a set of cards. Group them into pairs of expressions that have the same value.

18.3: Near and Far From Zero

а	b	-a	-4 <i>b</i>	- <i>a</i> + <i>b</i>	$a \div -b$	a^2	<i>b</i> ³
$-\frac{1}{2}$	6						
$\frac{1}{2}$	-6						
-6	$-\frac{1}{2}$						

- 1. For each set of values for *a* and *b*, evaluate the given expressions and record your answers in the table.
- 2. When $a = -\frac{1}{2}$ and b = 6, which expression:

has the largest value?	has the smallest value?	is the closest to zero?
	has the smallest value.	

3. When $a = \frac{1}{2}$ and b = -6, which expression:

has the largest value?	has the smallest value?	is the closest to zero?
------------------------	-------------------------	-------------------------

4. When a = -6 and $b = -\frac{1}{2}$, which expression:

has the largest value? has the smallest value? is the closest to zero?

Are you ready for more?

Are there any values could you use for *a* and *b* that would make all of these expressions have the same value? Explain your reasoning.

18.4: Seagulls and Sharks Again

A seagull has a vertical position *a*, and a shark has a vertical position *b*. Draw and label a point on the vertical axis to show the vertical position of each new animal.

- 1. A dragonfly at d, where d = -b
- 2. A jellyfish at j, where j = 2b
- 3. An eagle at *e*, where $e = \frac{1}{4}a$.
- 4. A clownfish at *c*, where $c = \frac{-a}{2}$
- 5. A vulture at v, where v = a + b
- 6. A goose at g, where g = a b

Lesson 18 Summary

We can represent sums, differences, products, and quotients of **rational numbers**, and combinations of these, with numerical and algebraic expressions.

Sums:	Differences:	Products:	Quotients:
$\frac{1}{2}$ + -9	$\frac{1}{2}$ 9	$(\frac{1}{2})(-9)$	$\frac{1}{2} \div -9$
-8.5 + x	-8.5 - x	-8.5 <i>x</i>	$\frac{-8.5}{x}$

We can write the product of two numbers in different ways.

- By putting a little dot between the factors, like this: $-8.5 \cdot x$.
- By putting the factors next to each other without any symbol between them at all, like this: -8.5x.

We can write the quotient of two numbers in different ways as well.

- By writing the division symbol between the numbers, like this: $-8.5 \div x$.
- By writing a fraction bar between the numbers like this: $\frac{-8.5}{x}$.

When we have an algebraic expression like $\frac{-8.5}{x}$ and are given a value for the variable, we can find the value of the expression. For example, if x is 2, then the value of the expression is -4.25, because -8.5 ÷ 2 = -4.25.