Lesson 18: Expressions with Rational Numbers

Let's develop our signed number sense.

18.1: True or False: Rational Numbers

Decide if each statement is true or false. Be prepared to explain your reasoning.

1. $(-38.76)(-15.6)$ is negative
2. $10,000-99,999<0$
3. $\left(\frac{3}{4}\right)\left(-\frac{4}{3}\right)=0$
4. $(30)(-80)-50=50-(30)(-80)$

18.2: Card Sort: The Same But Different

Your teacher will give you a set of cards. Group them into pairs of expressions that have the same value.

18.3: Near and Far From Zero

a	b	$-a$	$-4 b$	$-a+b$	$a \div-b$	a^{2}	b^{3}
$-\frac{1}{2}$	6						
$\frac{1}{2}$	-6						
-6	$-\frac{1}{2}$						

1. For each set of values for a and b, evaluate the given expressions and record your answers in the table.
2. When $a=-\frac{1}{2}$ and $b=6$, which expression:
has the largest value? has the smallest value? is the closest to zero?
3. When $a=\frac{1}{2}$ and $b=-6$, which expression:
has the largest value? has the smallest value? is the closest to zero?
4. When $a=-6$ and $b=-\frac{1}{2}$, which expression:
has the largest value? has the smallest value? is the closest to zero?

Are you ready for more?

Are there any values could you use for a and b that would make all of these expressions have the same value? Explain your reasoning.

18.4: Seagulls and Sharks Again

A seagull has a vertical position a, and a shark has a vertical position b. Draw and label a point on the vertical axis to show the vertical position of each new animal.

1. A dragonfly at d, where $d=-b$
2. A jellyfish at j, where $j=2 b$
3. An eagle at e, where $e=\frac{1}{4} a$.
4. A clownfish at c, where $c=\frac{-a}{2}$
5. A vulture at v, where $v=a+b$
6. A goose at g, where $g=a-b$

Lesson 18 Summary

We can represent sums, differences, products, and quotients of rational numbers, and combinations of these, with numerical and algebraic expressions.

Sums:	Differences:	Products:	Quotients:
$\frac{1}{2}+-9$	$\frac{1}{2}--9$	$\left(\frac{1}{2}\right)(-9)$	$\frac{1}{2} \div-9$
$-8.5+x$	$-8.5-x$	$-8.5 x$	$\frac{-8.5}{x}$

We can write the product of two numbers in different ways.

- By putting a little dot between the factors, like this: $-8.5 \cdot x$.
- By putting the factors next to each other without any symbol between them at all, like this: $-8.5 x$.

We can write the quotient of two numbers in different ways as well.

- By writing the division symbol between the numbers, like this: $-8.5 \div x$.
- By writing a fraction bar between the numbers like this: $\frac{-8.5}{x}$.

When we have an algebraic expression like $\frac{-8.5}{x}$ and are given a value for the variable, we can find the value of the expression. For example, if x is 2 , then the value of the expression is -4.25 , because $-8.5 \div 2=-4.25$.

