Lesson 7 Practice Problems

1. What triangle congruence theorem could you use to prove triangle $A D E$ is congruent to triangle $C B E$?

2. Han wrote a proof that triangle $B C D$ is congruent to $D C \| A B$ triangle $D A B$. Han's proof is incomplete. How can Han fix his proof?

- Line $A B$ is parallel to line $D C$ and cut by transversal $D B$. So angles $C D B$ and $A B D$ are alternate interior angles and must be congruent.
- Side $D B$ is congruent to side $B D$ because they're the same segment.
${ }^{\circ}$ Angle A is congruent to angle C because they're both right angles.
- By the Angle-Side-Angle Triangle Congruence Theorem, triangle $B C D$ is congruent to triangle $D A B$.

3. Segment $G E$ is an angle bisector of both angle $H E F$ and angle $F G H$. Prove triangle $H G E$ is congruent to triangle $F G E$.

4. Triangles $A C D$ and $B C D$ are isosceles. Angle $B A C$ has a measure of 33 degrees and angle $B D C$ has a measure of 35 degrees. Find the measure of angle $A B D$.

(From Unit 2, Lesson 6.)
5. Which conjecture is possible to prove?
A. All triangles with at least one side length of 5 are congruent.
B. All pentagons with at least one side length of 5 are congruent.
C. All rectangles with at least one side length of 5 are congruent.
D. All squares with at least one side length of 5 are congruent.
(From Unit 2, Lesson 5.)
6. Andre is drawing a triangle that is congruent to this one. He begins by constructing an angle congruent to angle $L K J$. What is the least amount of additional information that Andre needs to construct a triangle congruent to this one?

(From Unit 2, Lesson 4.)
7. Here is a diagram of a straightedge and compass construction. C is the center of one circle, and B is the center of the other. Which segment has the same length as segment CA?

A. $B A$
B. $B D$
C. $C B$
D. $A D$
(From Unit 1, Lesson 1.)
