Lesson 5 Practice Problems

1. Write a sequence of rigid motions to take figure $A B C$ to figure $D E F$.

2. Prove the circle centered at A is congruent to the circle centered at C.

$$
A B=C D
$$

3. Which conjecture is possible to prove?
A. All quadrilaterals with at least one side length of 3 are congruent.
B. All rectangles with at least one side length of 3 are congruent.
C. All rhombuses with at least one side length of 3 are congruent.
D. All squares with at least one side length of 3 are congruent.
4. Match each statement using only the information shown in the pairs of congruent triangles.
A. The 2 sides and the included angle of one triangle are congruent to 2 sides and the included angle of another triangle.
B. The 2 angles and the included side of one triangle are congruent to 2 angles and the included side of another triangle.
C. In the 2 triangles there are 3 pairs of congruent sides.
1.

3.

(From Unit 2, Lesson 4.)
5. Triangle $H E F$ is the image of triangle $H G F$ after a reflection across line $F H$. Write a congruence statement for the 2 congruent triangles.

(From Unit 2, Lesson 2.)
6. Triangle $A B C$ is congruent to triangle $E D F$. So, Lin knows that there is a sequence of rigid motions that takes $A B C$ to $E D F$.

Select all true statements after the transformations:
A. Angle A coincides with angle F.
B. Angle B coincides with angle D.
C. Angle C coincides with angle E.
D. Segment $B A$ coincides with segment $D E$.
E. Segment $B C$ coincides with segment $F E$.
(From Unit 2, Lesson 3.)
7. This design began from the construction of a regular hexagon. Is quadrilateral $J K L O$ congruent to the other 2 quadrilaterals? Explain how you know.

(From Unit 1, Lesson 22.)

