Lesson 13: Solving Systems of Equations

Let's solve systems of equations.
13.1: True or False: Two Lines

Use the lines to decide whether each statement is true or false. Be prepared to explain your reasoning using the lines.

1. A solution to $8=-x+10$ is 2 .
2. A solution to $2=2 x+4$ is 8 .
3. A solution to $-x+10=2 x+4$ is 8 .
4. A solution to $-x+10=2 x+4$ is 2 .
5. There are no values of x and y that make $y=-x+10$ and $y=2 x+4$ true at the same time.

13.2: Matching Graphs to Systems

Here are three systems of equations graphed on a coordinate plane:

1. Match each figure to one of the systems of equations shown here.
a. $\left\{\begin{array}{l}y=3 x+5 \\ y=-2 x+20\end{array}\right.$
b. $\left\{\begin{array}{l}y=2 x-10 \\ y=4 x-1\end{array}\right.$
c. $\left\{\begin{array}{l}y=0.5 x+12 \\ y=2 x+27\end{array}\right.$
2. Find the solution to each system and check that your solution is reasonable based on the graph.

13.3: Different Types of Systems

Your teacher will give you a page with some systems of equations.

1. Graph each system of equations carefully on the provided coordinate plane.
2. Describe what the graph of a system of equations looks like when it has ...
a. 1 solution
b. 0 solutions
c. infinitely many solutions

Are you ready for more?

The graphs of the equations $A x+B y=15$ and $A x-B y=9$ intersect at $(2,1)$. Find A and B. Show or explain your reasoning.

Lesson 13 Summary

Sometimes it is easier to solve a system of equations without having to graph the equations and look for an intersection point. In general, whenever we are solving a system of equations written as

$$
\left\{\begin{array}{l}
y=[\text { some stuff }] \\
y=[\text { some other stuff }]
\end{array}\right.
$$

we know that we are looking for a pair of values (x, y) that makes both equations true. In particular, we know that the value for y will be the same in both equations. That means that
[some stuff] $=$ [some other stuff]

For example, look at this system of equations:

$$
\left\{\begin{array}{l}
y=2 x+6 \\
y=-3 x-4
\end{array}\right.
$$

Since the y value of the solution is the same in both equations, then we know

$$
2 x+6=-3 x-4
$$

We can solve this equation for x :

$$
\begin{aligned}
2 x+6 & =-3 x-4 & & \\
5 x+6 & =-4 & & \text { add } 3 x \text { to each side } \\
5 x & =-10 & & \text { subtract } 6 \text { from each side } \\
x & =-2 & & \text { divide each side by } 5
\end{aligned}
$$

But this is only half of what we are looking for: we know the value for x, but we need the corresponding value for y. Since both equations have the same y value, we can use either equation to find the y-value:

$$
y=2(-2)+6
$$

Or

$$
y=-3(-2)-4
$$

In both cases, we find that $y=2$. So the solution to the system is ($-2,2$). We can verify this by graphing both equations in the coordinate plane.

In general, a system of linear equations can have:

- No solutions. In this case, the lines that correspond to each equation never intersect.
- Exactly one solution. The lines that correspond to each equation intersect in exactly one point.
- An infinite number of solutions. The graphs of the two equations are the same line!

