Unit 6 Lesson 9: Introduction to Trigonometric Functions

1 An Angle and a Circle (Warm up)

Student Task Statement

Suppose there is a point P on the unit circle at (1, 0).

- 1. Describe how the *x*-coordinate of *P* changes as it rotates once counterclockwise around the circle.
- 2. Describe how the *y*-coordinate of *P* changes as it rotates once counterclockwise around the circle.

2 Do the Wave

Student Task Statement

1. For each tick mark on the horizontal axis, plot the value of $y = cos(\theta)$, where θ is the measure of an angle in radians. Use the class display of the unit circle, the unit circle from an earlier lesson, or technology to estimate the value of $cos(\theta)$.

2. For each tick mark on the horizontal axis, plot the value of $y = \sin(\theta)$. Use the class display of the unit circle, the unit circle from an earlier lesson, or technology to estimate the value of $\sin(\theta)$.

- 3. What do you notice about the two graphs?
- 4. Explain why any angle measure between 0 and 2π gives a point on each graph.

5. Could these graphs represent functions? Explain your reasoning.

3 Graphs of Cosine and Sine

Student Task Statement

- 1. Looking at the graphs of $y = \cos(\theta)$ and $y = \sin(\theta)$, at what values of θ do $\cos(\theta) = \sin(\theta)$? Where on the unit circle do these points correspond to?
- 2. For each of these equations, first predict what the graph looks like, and then check your prediction using technology.

a. $y = \cos(\theta) + \sin(\theta)$

b.
$$y = \cos^2(\theta)$$

c. $y = \sin^2(\theta)$

d. $y = \cos^2(\theta) + \sin^2(\theta)$

Images for Activity Synthesis

