Lesson 6: Using Diagrams to Find the Number of Groups

Let's draw tape diagrams to think about division with fractions.

6.1: How Many of These in That?

1. We can think of the division expression $10 \div 2\frac{1}{2}$ as the question: "How many groups of $2\frac{1}{2}$ are in 10?" Complete the tape diagram to represent this question. Then find the answer.

		1	0			

2. Complete the tape diagram to represent the question: "How many groups of 2 are in 7?" Then find the answer.

		7		
		\land		

6.2: Representing Groups of Fractions with Tape Diagrams

To make sense of the question "How many $\frac{2}{3}$ s are in 1?," Andre wrote equations and drew a tape diagram.

- 1. In an earlier task, we used pattern blocks to help us solve the equation $1 \div \frac{2}{3} = ?$. Explain how Andre's tape diagram can also help us solve the equation.
- 2. Write a multiplication equation and a division equation for each question. Then, draw a tape diagram and find the answer.
 - a. How many $\frac{3}{4}$ s are in 1?

b. How many $\frac{2}{3}$ s are in 3?

 1							

c. How many $\frac{3}{2}$ s are in 5?

6.3: Finding Number of Groups

- 1. Write a multiplication equation or a division equation for each question. Then, find the answer and explain or show your reasoning.
 - a. How many $\frac{3}{8}$ -inch thick books make a stack that is 6 inches tall?

b. How many groups of $\frac{1}{2}$ pound are in $2\frac{3}{4}$ pounds?

2. Write a question that can be represented by the division equation $5 \div 1\frac{1}{2} = ?$. Then, find the answer and explain or show your reasoning.

Lesson 6 Summary

A baker used 2 kilograms of flour to make several batches of a pastry recipe. The recipe called for $\frac{2}{5}$ kilogram of flour per batch. How many batches did she make?

We can think of the question as: "How many groups of $\frac{2}{5}$ kilogram make 2 kilograms?" and represent that question with the equations:

 $? \cdot \frac{2}{5} = 2$ $2 \div \frac{2}{5} = ?$

To help us make sense of the question, we can draw a tape diagram. This diagram shows 2 whole kilograms, with each kilogram partitioned into fifths.

We can see there are 5 groups of $\frac{2}{5}$ in 2. Multiplying 5 and $\frac{2}{5}$ allows us to check this answer: $5 \cdot \frac{2}{5} = \frac{10}{5}$ and $\frac{10}{5} = 2$, so the answer is correct.

Notice the number of groups that result from $2 \div \frac{2}{5}$ is a whole number. Sometimes the number of groups we find from dividing may not be a whole number. Here is an example:

Suppose one serving of rice is $\frac{3}{4}$ cup. How many servings are there in $3\frac{1}{2}$ cups?

Looking at the diagram, we can see there are 4 full groups of $\frac{3}{4}$, plus 2 fourths. If 3 fourths make a whole group, then 2 fourths make $\frac{2}{3}$ of a group. So the number of servings (the "?" in each equation) is $4\frac{2}{3}$. We can check this by multiplying $4\frac{2}{3}$ and $\frac{3}{4}$.

$$4\frac{2}{3} \cdot \frac{3}{4} = \frac{14}{3} \cdot \frac{3}{4}$$
, and $\frac{14}{3} \cdot \frac{3}{4} = \frac{14}{4}$, which is indeed equivalent to $3\frac{1}{2}$.