Lesson 5: A New Way to Interpret a over b

Let's investigate what a fraction means when the numerator and denominator are not whole numbers.

5.1: Recalling Ways of Solving

Solve each equation. Be prepared to explain your reasoning.

$$
0.07=10 \mathrm{~m}
$$

$$
10.1=t+7.2
$$

5.2: Interpreting $\frac{a}{b}$

Solve each equation.

1. $35=7 x$
2. $35=11 x$
3. $7 x=7.7$
4. $0.3 x=2.1$
5. $\frac{2}{5}=\frac{1}{2} x$

Are you ready for more?

Solve the equation. Try to find some shortcuts.

$$
\frac{1}{6} \cdot \frac{3}{20} \cdot \frac{5}{42} \cdot \frac{7}{72} \cdot x=\frac{1}{384}
$$

5.3: Storytime Again

Take turns with your partner telling a story that might be represented by each equation. Then, for each equation, choose one story, state what quantity x describes, and solve the equation. If you get stuck, consider drawing a diagram.

$$
0.7+x=12
$$

$$
\frac{1}{4} x=\frac{3}{2}
$$

Lesson 5 Summary

In the past, you learned that a fraction such as $\frac{4}{5}$ can be thought of in a few ways.

- $\frac{4}{5}$ is a number you can locate on the number line by dividing the section between 0 and 1 into 5 equal parts and then counting 4 of those parts to the right of 0 .
- $\frac{4}{5}$ is the share that each person would have if 4 wholes were shared equally among 5 people. This means that $\frac{4}{5}$ is the result of dividing 4 by 5 .

We can extend this meaning of a fraction as a quotient to fractions whose numerators and denominators are not whole numbers. For example, we can represent 4.5 pounds of rice divided into portions that each weigh 1.5 pounds as: $\frac{4.5}{1.5}=4.5 \div 1.5=3$. In other words, $\frac{4.5}{1.5}=3$ because the quotient of 4.5 and 1.5 is 3 .

Fractions that involve non-whole numbers can also be used when we solve equations.

Suppose a road under construction is $\frac{3}{8}$ finished and the length of the completed part is $\frac{4}{3}$ miles. How long will the road be when completed?

We can write the equation $\frac{3}{8} x=\frac{4}{3}$ to represent the situation and solve the equation.

The completed road will be $3 \frac{5}{9}$ or about 3.6 miles long.

$$
\begin{aligned}
\frac{3}{8} x & =\frac{4}{3} \\
x & =\frac{\frac{4}{3}}{\frac{3}{8}} \\
x & =\frac{4}{3} \cdot \frac{8}{3} \\
x & =\frac{32}{9}=3 \frac{5}{9}
\end{aligned}
$$

