## Family Support Materials

## Conditional Probability

In this unit, your student will build on their understanding of probability, including conditional probability. The probability of an event is a number that measures how likely the event is to happen. It can be 0,1 , or any number in between. It is 0 if the event will never happen and 1 if the event must happen. If an event occurs half of the time in the long run, then its probability is 0.5 . Conditional probability is the probability that one event occurs under the condition that another event occurs.

Here is an example. The table summarizes the type (medium, large, or extra-large) and condition (no cracked eggs, or one or more cracked eggs) of 50 cartons of eggs at a grocery store.

|  | medium | large | extra-large | total |
| :---: | :---: | :---: | :---: | :---: |
| one or more eggs cracked | 1 | 3 | 1 | 10 |
| no cracked eggs | 4 | 22 | 19 | 40 |
| total | 5 | 25 | 20 | 50 |

One carton is selected at random.
What is the probability that the carton has no cracked eggs? This probability is 0.8 . This is because 40 cartons have no cracked eggs out of a total of 50 cartons and $\frac{40}{50}=0.8$. Students also see this type of of question written as $P$ (no cracked eggs) which means "the probability that a randomly selected carton has no cracked eggs." In this case, $P($ no cracked eggs $)=0.8$.

What is the probability that the carton has no cracked eggs under the condition that it is a carton of extra-large eggs? This conditional probability is 0.95 . This is because 19 cartons of extra-large eggs had no cracked eggs out of a total of 20 cartons of extra-large eggs and $\frac{19}{20}=0.95$. This type of probability is called conditional probability because it is a probability based on the condition of selecting a carton of extra-large eggs. Students see this type of question written as $P$ (no cracked eggs) which means that the "probability that a randomly selected carton has no cracked eggs under the condition that it is a carton of extra-large eggs." In this case $P$ (no cracked eggs | extra-large) $=0.95$.

## Here is a task to try with your student:

The table summarizes the position of loaves of bread at the grocery store (bread in the front row or bread not in the front row) and the sell-by date (within five days or more than 5 days away).

A loaf of bread is selected at random.

|  | sell-by date within 5 <br> days | sell-by date more than 5 days <br> away |
| :---: | :---: | :---: |
| bread in the front row | 36 | 14 |
| bread not in the front <br> row | 24 | 76 |

1. What is the probability that the bread has a sell-by date within 5 days?
2. What is the probability that bread has a sell-by date within 5 days under the condition that the loaf of bread is in the front row?
3. What is $P$ (sell-by date more than 5 days away | bread not in the front row)?
4. You are in a rush and want to grab a loaf of bread at this store without looking at the sell-by date. Does grabbing the loaf of bread from the front row give you the best chance of getting a loaf of bread with a sell-by date more than 5 days away? Use probability to explain your reasoning.

## Solution:

1. 0.4 or $\frac{60}{150}$
2. 0.72 or $\frac{36}{50}$
3. 0.76 or $\frac{76}{100}$
4. No it does not give you the best chance of getting a loaf of bread with a sell-by date more than 5 days away. The probability of getting a loaf or bread with a sell-by date more than 5 days away under the condition that is in the front row is 0.28 compared to a probability of 0.72 for a loaf of bread that is not in the front row.
