## Lesson 6: Actual Data vs. Predicted Data

• Let's explore linear models that are fit to data

## 6.1: Which One Doesn't Belong: Data Representations

Which one doesn't belong?



## **6.2: Predicting Sales**



Here are a graph and a table showing the number of sales of eyeglasses based on the price in dollars. The model, represented by y = 1,000 - 16x, is graphed with a scatter plot. Use the graph and the table to answer the questions.

| price per<br>eyeglasses<br>(dollars) | 8   | 9   | 10  | 15  | 16  | 17  | 20  | 22  | 26  | 28  |   |
|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| number of<br>sales                   | 850 | 800 | 900 | 789 | 703 | 725 | 658 | 640 | 614 | 540 | ) |
| price per<br>eyeglasses<br>(dollars) | 30  | 34  | 37  | 40  | 42  | 48  | 50  | 55  | 57  | 60  |   |
| number of<br>sales                   | 520 | 425 | 380 | 370 | 370 | 305 | 175 | 136 | 75  | 25  |   |

1. How many sales does the model estimate will be made when the eyeglasses are \$50 each? Explain or show your reasoning.

2. How many sales were actually made when the eyeglasses were \$50 each?



- 3. How many times did the model estimate fewer sales than what were actually made? List the coordinates.
- 4. How many times were the predicted number of sales and actual number of sales equivalent? List the coordinates.
- 5. Find a point for which the model predicted there would be at least 25 more sales than were actually made?



## **6.3: Predictions**

Priya's family keeps track of the number of miles on each trip they take over the summer and the amount spent on gas for the trip. The model, represented by y = 50 + 0.15x, is graphed with a scatter plot.



Use the graph and equation to complete the table. Then, use the graph, equation, and table to answer the questions.

| distance<br>(miles) | amount spent on gas<br>(dollars) | estimated amount spent on gas<br>(dollars) |
|---------------------|----------------------------------|--------------------------------------------|
| 50                  | 60                               |                                            |
| 70                  | 65                               |                                            |
| 100                 | 75                               |                                            |
| 60                  | 67                               |                                            |
| 110                 | 60                               |                                            |
| 140                 | 65                               |                                            |
| 80                  | 68                               |                                            |
| 150                 | 80                               |                                            |
| 160                 | 76                               |                                            |

- 1. When Priya's family drove 85 miles, they spent \$68 on gas. How much did they expect to spend based on the linear model?
- 2. How far had the family gone when they spent \$80 on gas?
- 3. How far does the model estimate the family should have driven when they spent \$80 on gas?
- 4. Are there any instances for which the model's estimated amount spent on gas is equivalent to the actual amount spent on gas?
- 5. Circle one option.
  - In general, the model predicts the family will spend more on gas than they actually spend.
  - In general, the model predicts the family will spend less on gas than they actually spend.