Lesson 26 Practice Problems

1. Kiran plans to save $\$ 200$ per year. Bank A would pay 6% interest, and Bank B would pay 4\% interest (both compounded annually). How many years will it take to save \$10,000 if he uses Bank A? Bank B?
2. Find the sum of the first 20 terms of each sequence:
a. $1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \ldots$
b. $3, \frac{6}{3}, \frac{12}{9}, \frac{24}{27}, \frac{48}{81}, \ldots$
c. $4,2,1, \frac{1}{2}, \frac{1}{4}, \ldots$
3. Diego wonders how much money he could save over 25 years if he puts $\$ 150$ a year into an account with 4% interest per year compounded annually. He calculates the following, but thinks he must have something wrong, since he ended up with a very small amount of money:
total amount $=150 \frac{1-0.04^{25}}{0.96}=156.25$
What did Diego forget in his calculation? How much should his total amount be? Explain or show your reasoning.
4. Which one of these equations is equivalent to $8=\frac{3+2 x}{4+x}$ for $x \neq-4$?
A. $8 \cdot(4+x)=3+2 x$
B. $8 \cdot(3+2 x)=4+x$
C. $8-(4+x)=3+2 x$
D. $\frac{4+x}{8}=3+2 x$
(From Unit 2, Lesson 23.)
5. Is $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ an identity? Explain or show your reasoning.
6. Is $a^{4}+b^{4}=(a+b)\left(a^{3}-a^{2} b-a b^{2}+b^{3}\right)$ an identity? Explain or show your reasoning.
(From Unit 2, Lesson 24.)
7. The formula for the sum s of the first n terms in a geometric sequence is given by $s=a\left(\frac{1-r^{n}}{1-r}\right)$, where a is the initial value and r is the common ratio.

A medicine is prescribed for a patient to take 700 mg every 12 hours for 5 days. After 12 hours, 4% of the medicine is still in the body. How much of the medicine is in the body after the last dose?

