Unit 4 Lesson 13: Exponential Functions with Base e

1 e on a Calculator (Warm up)

Student Task Statement

The other day, you learned that e is a mathematical constant whose value is approximately 2.718. When working on problems that involve e, we often rely on calculators to estimate values.

- 1. Find the e button on your calculator. Experiment with it to understand how it works. (For example, see how the value of 2e or e^2 can be calculated.)
- 2. Evaluate each expression. Make sure your calculator gives the indicated value. If it doesn't, check in with your partner to compare how you entered the expression.
 - a. $10 \cdot e^{(1.1)}$ should give approximately 30.04166
 - b. $5 \cdot e^{(1.1)(7)}$ should give approximately 11,041.73996
 - c. $e^{\frac{9}{23}}$ + 7 should give approximately 8.47891

2 Same Situation, Different Equations

Student Task Statement

The population of a colony of insects is 9 thousand when it was first being studied. Here are two functions that could be used to model the growth of the colony t months after the study began.

$$P(t) = 9 \cdot (1.02)^t$$

$$Q(t) = 9 \cdot e^{(0.02t)}$$

1. Use technology to find the population of the colony at different times after the beginning of the study and complete the table.

t (time in months)	P(t) (population in thousands)	Q(t) (population in thousands)
6		
12		
24		
48		
100		

- 2. What do you notice about the populations in the two models?
- 3. Here are pairs of equations representing the populations, in thousands, of four other insect colonies in a research lab. The initial population of each colony is 10 thousand and they are growing exponentially. *t* is time, in months, since the study began.

Colony 1	Colony 2
$f(t) = 10 \cdot (1.05)^t$	$k(t) = 10 \cdot (1.03)^t$
$g(t) = 10 \cdot e^{(0.05t)}$	$l(t) = 10 \cdot e^{(0.03t)}$
Colony 3	Colony 4
$p(t) = 10 \cdot (1.01)^t$	$v(t) = 10 \cdot (1.005)^t$
$q(t) = 10 \cdot (1.01)$ $q(t) = 10 \cdot e^{(0.01t)}$	$w(t) = 10 \cdot (1.005)$ $w(t) = 10 \cdot e^{(0.005t)}$
$q(i) - 10 \cdot c$	$\omega(i) = 10^{-6}$

- a. Graph each pair of functions on the same coordinate plane. Adjust the graphing window to the following boundaries to start: 0 < x < 50 and 0 < y < 80.
- b. What do you notice about the graph of the equation written using e and the counterpart written without e? Make a couple of observations.

3e in Exponential Models

Student Task Statement

Exponential models that use e often use the format shown in this example:

Here are some situations in which a percent change is considered to be happening continuously. For each function, identify the missing information and the missing growth rate (expressed as a percentage).

- 1. At time t = 0, measured in hours, a scientist puts 50 bacteria into a gel on a dish. The bacteria are growing and the population is expected to show exponential growth.
 - function: $b(t) = 50 \cdot e^{(0.25t)}$
 - o continuous growth rate per hour:
- 2. In 1964, the population of the United States was growing at a rate of 1.4% annually. That year, the population was approximately 192 million. The model predicts the population, in millions, *t* years after 1964.
 - \circ function: $p(t) = \underline{\hspace{1cm}} \cdot e^{-t}$
 - o continuous growth rate per year: 1.4%
- 3. In 1955, the world population was about 2.5 billion and growing. The model predicts the population, in billions, *t* years after 1955.
 - function: $q(t) = _{--}$ $e^{(0.0168t)}$
 - o continuous growth rate per year:

4 Graphing Exponential Functions with Base e (Optional)

Student Task Statement

- 1. Use graphing technology to graph the function defined by $f(t) = 50 \cdot e^{(0.25t)}$. Adjust the graphing window as needed to answer these questions:
 - a. The function f models the population of bacteria in t hours after it was initially measured. About how many bacteria were in the dish 10 hours after the scientist put the initial 50 bacteria in the dish?
 - b. About how many hours did it take for the number of bacteria in the dish to double? Explain or show your reasoning.
- 2. Use graphing technology to graph the function defined by $p(t) = 192 \cdot e^{(0.014t)}$. Adjust the graphing window as needed to answer these questions:
 - a. The equation models the population, in millions, in the U.S. *t* years after 1964. What does the model predict for the population of the U.S. in 1974?
 - b. In which year does the model predict the population will reach 300 million?