Lesson 23 Practice Problems

1. Select all the identities:
A. $(x+2)^{3}=x^{3}+8$
B. $\left(x^{6}+x\right)=(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x\right)$
C. $\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)=x^{6}-1$
D. $(x+1)^{4}=x^{4}+x^{3}+x^{2}+x+1$
E. $(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right)=x^{5}+1$
F. $\left(x^{3}-1\right)\left(x^{3}+1\right)=x^{6}-1$
2. Is $2(x+1)^{2}=(2 x+2)^{2}$ an identity? Explain or show your reasoning.
3. Mai is solving the rational equation $5=\frac{2+7 x}{x}$ for x. What move do you think Mai would make first to solve for x ? Explain your reasoning.
4. For x-values of 0 and $-2,\left(x^{5}+32\right)=(x+2)^{5}$. Does this mean the equation is an identity? Explain your reasoning.
5. Clare finds an expression for $S(r)$ that gives the surface area in square inches of any cylindrical can with a specific fixed volume, in terms of its radius r in centimeters. This is the graph Clare gets if she allows r to take on any value between -1.2 and 3 .
a. What would be a more appropriate domain for Clare to use instead?
b. What is the approximate minimum surface area for her can?

(From Unit 2, Lesson 16.)
6. Which values of x make $\frac{3 x+1}{x}=\frac{1}{x-3}$ true?
