Unit 4 Lesson 8: Unknown Exponents

1 A Bunch of x 's (Warm up)

Student Task Statement

Solve each equation. Be prepared to explain your reasoning.

1. $\frac{x}{3}=12$
2. $3 x^{2}=12$
3. $x^{3}=12$
4. $\sqrt[3]{x}=12$
5. $\sqrt{3 x}=12$
6. $\frac{3}{x}=12$

2 A Tessellated Trapezoid

Student Task Statement

Here is a pattern showing a trapezoid being successively decomposed into four similar trapezoids at each step.

1. If n is the step number, how many of the smallest trapezoids are there when n is 4 ? What about when n is 10 ?
2. At a certain step, there are 262,144 smallest trapezoids.
a. Write an equation to represent the relationship between n and the number of trapezoids in that step.
b. Explain to a partner how you might find the value of that step number.

3 Successive Splitting

Student Task Statement

In a lab, a colony of 100 bacteria is placed on a petri dish. The population triples every hour.

1. How would you estimate or find the population of bacteria in:
a. 4 hours?
b. 90 minutes?
c. $\frac{1}{2}$ hour?
2. How would you estimate or find the number of hours it would take the population to grow to:
a. 1,000 bacteria?
b. double the initial population?

4 Missing Values (Optional)

Student Task Statement

Complete the tables.

x			-1	0	$\frac{1}{2}$	1			5		
2^{x}	$\frac{1}{32}$	$\frac{1}{4}$	$\frac{1}{2}$				4	16		256	1,024

x				$\frac{1}{3}$	$\frac{1}{2}$				
5^{x}	$\frac{1}{25}$	$\frac{1}{5}$	1			5	125	625	3,125

Be prepared to explain how you found the missing values.

