

Lesson 5 Practice Problems

 A rocket is launched in the air and its height, in feet, is modeled by the function *h*. Here is a graph representing *h*.

Select **all** true statements about the situation.

A. The rocket is launched from a height less than 20 feet above the ground.

- B. The rocket is launched from about 20 feet above the ground.
- C. The rocket reaches its maximum height after about 3 seconds.
- D. The rocket reaches its maximum height after about 160 seconds.
- E. The maximum height of the rocket is about 160 feet.
- 2. A baseball travels *d* meters *t* seconds after being dropped from the top of a building. The distance traveled by the baseball can be modeled by the equation $d = 5t^2$.
 - a. Complete the table and plot the data on the coordinate plane.

t (seconds)	d (meters)	
0		
0.5		
1		
1.5		time (seconds)
2		

b. Is the baseball traveling at a constant speed? Explain how you know.

3. A rock is dropped from a bridge over a river. Which table could represent the distance in feet fallen as a function of time in seconds?

time (seconds)	distance fallen (feet)
0	0
1	48
2	96
3	144

Table B

time (seconds)	distance fallen (feet)
0	0
1	16
2	64
3	144

Table C

Table A

Table D

time (seconds)	distance fallen (feet)	time (seconds)
0	180	0
1	132	1
2	84	2
3	36	3

time (seconds)	distance fallen (feet)
0	180
1	164
2	116
3	36

A. Table A

B. Table B

C. Table C

D. Table D

4. Determine whether $5n^2$ or 3^n will have the greater value when:

a. *n* = 1 b. *n* = 3 c. *n* = 5

(From Unit 6, Lesson 4.)

- 5. Select **all** of the expressions that give the number of small squares in Step *n*.
 - A. 2nB. n^2 C. n + 1D. $n^2 + 1$ E. n(n + 1)F. $n^2 + n$ G. n + n + 1

Step 2

Step 3

(From Unit 6, Lesson 3.)

6. A small ball is dropped from a tall building. Which equation could represent the ball's height, *h*, in feet, relative to the ground, as a function of time, *t*, in seconds?

A.
$$h = 100 - 16t$$

B. $h = 100 - 16t^2$
C. $h = 100 - 16^t$
D. $h = 100 - \frac{16}{t}$

7. Use the rule for function f to draw its graph.

$$f(x) = \begin{cases} 2, & -5 \le x < -2\\ 6, & -2 \le x < 4\\ x, & 4 \le x < 8 \end{cases}$$

(From Unit 4, Lesson 12.)

8. Diego claimed that $10 + x^2$ is always greater than 2^x and used this table as evidence.

Do you agree with Diego?

x	$10 + x^2$	2 ^{<i>x</i>}
1	11	2
2	14	4
3	19	8
4	26	16

(From Unit 6, Lesson 4.)

- 9. The table shows the height, in centimeters, of the water in a swimming pool at different times since the pool started to be filled.
 - a. Does the height of the water increase by the same amount each minute? Explain how you know.

minutes	height
0	150
1	150.5
2	151
3	151.5

b. Does the height of the water increase by the same factor each minute? Explain how you know.