

Lesson 8 Practice Problems

- 1. Draw a diagram to show that (2x + 5)(x + 3) is equivalent to $2x^2 + 11x + 15$.
- 2. Match each quadratic expression that is written as a product with an equivalent expression that is expanded.

A. $(x+2)(x+6)$	1. $x^2 + 12x + 32$
B. $(2x + 8)(x + 2)$	2. $2x^2 + 10x + 12$
C. $(x+8)(x+4)$	3. $2x^2 + 12x + 16$
D. $(x + 2)(2x + 6)$	4. $x^2 + 8x + 12$

- 3. Select **all** expressions that are equivalent to $x^2 + 4x$.
 - A. x(x + 4)B. $(x + 2)^2$ C. (x + x)(x + 4)D. $(x + 2)^2 - 4$ E. (x + 4)x
- 4. Tyler drew a diagram to expand (x + 5)(2x + 3).
 - a. Explain Tyler's mistake.

	2 <i>x</i>	3
X	2 <i>x</i> ²	3х
5	7x	8

b. What is the correct expanded form of (x + 5)(2x + 3)? 5

5. Explain why the values of the exponential expression 3^x will eventually overtake the values of the quadratic expression $10x^2$.

(From Unit 6, Lesson 4.)

6. A baseball travels *d* meters *t* seconds after being dropped from the top of a building. The distance traveled by the baseball can be modeled by the equation $d = 5t^2$.

Which graph could represent this situation? Explain how you know.Graph AGraph B

(From Unit 6, Lesson 5.)

7. Consider a function q defined by $q(x) = x^2$. Explain why negative values are not included in the range of q.

(From Unit 4, Lesson 10.)

8. Based on past concerts, a band predicts selling 600 - 10p concert tickets when each ticket is sold at *p* dollars.

ticket price (dollars)	number of tickets	revenue (dollars)
10		
15		
20		
30		
35		
45		
50		
60		
р		

a. Complete the table to find out how many concert tickets the band expects to sell and what revenues it expects to receive at the given ticket prices.

- b. In this model, at what ticket prices will the band earn no revenue at all?
- c. At what ticket prices should the band sell the tickets if it must earn at least 8,000 dollars in revenue to break even (to not lose money) on a given concert. Explain how you know.

(From Unit 6, Lesson 7.)

- 9. A population of bears decreases exponentially. The population was first measured in 2010.
 - a. What is the annual factor of decrease for the bear population? Explain how you know.

(From Unit 5, Lesson 8.)

10. Equations defining functions a, b, c, d, and f are shown here.

Select **all** the equations that represent exponential functions.

A.
$$a(x) = 2^3 \cdot x$$

B. $b(t) = \left(\frac{2}{3}\right)^t$
C. $c(m) = \frac{1}{5} \cdot 2^m$
D. $d(x) = 3x^2$
E. $f(t) = 3 \cdot 2^t$

(From Unit 5, Lesson 8.)