Lesson 2: Truth and Equations

Let's use equations to represent stories and see what it means to solve equations.

2.1: Three Letters

1. The equation a + b = c could be true or false.

a. If *a* is 3, *b* is 4, and *c* is 5, is the equation true or false?

b. Find new values of *a*, *b*, and *c* that make the equation true.

c. Find new values of *a*, *b*, and *c* that make the equation false.

2. The equation $x \cdot y = z$ could be true or false.

a. If x is 3, y is 4, and z is 12, is the equation true or false?

b. Find new values of x, y, and z that make the equation true.

c. Find new values of *x*, *y*, and *z* that make the equation false.

20x = 5

2.2: Storytime

Here are three situations and six equations. Which equation best represents each situation? If you get stuck, consider drawing a diagram.

x + 20 = 5 $5 \cdot 20 = x$

x + 5 = 20	x = 20 + 5	5x = 20

- After Elena ran 5 miles on Friday, she had run a total of 20 miles for the week. S
- 1. After Elena ran 5 miles on Friday, she had run a total of 20 miles for the week. She ran *x* miles before Friday.

2. Andre's school has 20 clubs, which is five times as many as his cousin's school. His cousin's school has *x* clubs.

3. Jada volunteers at the animal shelter. She divided 5 cups of cat food equally to feed 20 cats. Each cat received *x* cups of food.

2.3: Using Structure to Find Solutions

Here are some equations that contain a **variable** and a list of values. Think about what each equation means and find a **solution** in the list of values. If you get stuck, consider drawing a diagram. Be prepared to explain why your solution is correct.

1. 1000 - a = 400

2. 12.6 = b + 4.1

3. 8c = 8

4.
$$\frac{2}{3} \cdot d = \frac{10}{9}$$

5. 10e = 1

6. 10 = 0.5 f

7.0.99 = 1 - g

8. $h + \frac{3}{7} = 1$

List:	$\frac{1}{8}$	$\frac{3}{7}$	$\frac{4}{7}$	$\frac{3}{5}$	$\frac{5}{3}$	$\frac{7}{3}$	0.01	0.1	0.5
	1	2	8.5	9.5	16.7	20	400	600	1400

Are you ready for more?

One solution to the equation a + b + c = 10 is a = 2, b = 5, c = 3.

How many different whole-number solutions are there to the equation a + b + c = 10? Explain or show your reasoning.

Lesson 2 Summary

An equation can be true or false. An example of a true equation is $7 + 1 = 4 \cdot 2$. An example of a false equation is 7 + 1 = 9.

An equation can have a letter in it, for example, u + 1 = 8. This equation is false if u is 3, because 3 + 1 does not equal 8. This equation is true if u is 7, because 7 + 1 = 8.

A letter in an equation is called a **variable**. In u + 1 = 8, the variable is u. A number that can be used in place of the variable that makes the equation true is called a **solution** to the equation. In u + 1 = 8, the solution is 7.

When a number is written next to a variable, the number and the variable are being multiplied. For example, 7x = 21 means the same thing as $7 \cdot x = 21$. A number written next to a variable is called a **coefficient**. If no coefficient is written, the coefficient is 1. For example, in the equation p + 3 = 5, the coefficient of p is 1.