Unit 7 Lesson 6: Rewriting Quadratic Expressions in Factored Form (Part 1)

1 Puzzles of Rectangles (Warm up)

Student Task Statement

Here are two puzzles that involve side lengths and areas of rectangles. Can you find the missing area in Figure A and the missing length in Figure B? Be prepared to explain your reasoning.

Figure A

Figure B

2 Using Diagrams to Understand Equivalent Expressions

Student Task Statement

1. Use a diagram to show that each pair of expressions is equivalent.

$x(x+3)$ and $x^2 + 3x$	$x(x + -6)$ and $x^2 - 6x$
$(x+2)(x+4)$ and $x^2 + 6x + 8$	$(x+4)(x+10)$ and $x^2 + 14x + 40$
$(x + -5)(x + -1)$ and $x^2 - 6x + 5$	$(x-1)(x-7)$ and $x^2 - 8x + 7$

2. Observe the pairs of expressions that involve the product of two sums or two differences. How is each expression in factored form related to the equivalent expression in standard form?

3 Let's Rewrite Some Expressions!

Student Task Statement

Each row in the table contains a pair of equivalent expressions.

Complete the table with the missing expressions. If you get stuck, consider drawing a diagram.

factored form	standard form
x(x + 7)	
	$x^2 + 9x$
	$x^2 - 8x$
(x+6)(x+2)	
	$x^2 + 13x + 12$
(x-6)(x-2)	
	$x^2 - 7x + 12$
	$x^2 + 6x + 9$
	$x^2 + 10x + 9$
	$x^2 - 10x + 9$
	$x^2 - 6x + 9$
	$x^2 + (m+n)x + mn$