Unit 7 Lesson 6: Rewriting Quadratic Expressions in Factored Form (Part 1)

1 Puzzles of Rectangles (Warm up)

Student Task Statement

Here are two puzzles that involve side lengths and areas of rectangles. Can you find the missing area in Figure A and the missing length in Figure B? Be prepared to explain your reasoning.

Figure A

2 Using Diagrams to Understand Equivalent Expressions

Student Task Statement

1. Use a diagram to show that each pair of expressions is equivalent.

$$
\begin{array}{ll}
x(x+3) \text { and } x^{2}+3 x & x(x+-6) \text { and } x^{2}-6 x \\
(x+2)(x+4) \text { and } x^{2}+6 x+8 & (x+4)(x+10) \text { and } x^{2}+14 x+40 \\
(x+-5)(x+-1) \text { and } x^{2}-6 x+5 & (x-1)(x-7) \text { and } x^{2}-8 x+7
\end{array}
$$

2. Observe the pairs of expressions that involve the product of two sums or two differences. How is each expression in factored form related to the equivalent expression in standard form?

3 Let's Rewrite Some Expressions!

Student Task Statement

Each row in the table contains a pair of equivalent expressions.

Complete the table with the missing expressions. If you get stuck, consider drawing a diagram.

factored form	standard form
$x(x+7)$	
	$x^{2}+9 x$
	$x^{2}-8 x$
$(x+6)(x+2)$	
	$x^{2}+13 x+12$
$(x-6)(x-2)$	$x^{2}-7 x+12$
	$x^{2}+6 x+9$
	$x^{2}-10 x+9$
	$x^{2}-6 x+9$
	$x^{2}+(m+n) x+m n$

