

Lesson 16: Compare Fractions with the Same Numerator

Standards Alignments

Addressing 3.NF.A.3.d

Teacher-facing Learning Goals

 Compare two fractions with the same numerator by reasoning about their size.

Student-facing Learning Goals

• Let's compare two fractions with the same numerator.

Lesson Purpose

The purpose of this lesson is for students to compare two fractions with the same numerator.

In this lesson, students reason that fractions with the same numerator have the same number of parts, and that the denominator shows the size or length of those parts. Students recognize that as the denominator increases, each part gets smaller. It is important that students develop this understanding rather than learning a rule about comparing fractions with the same numerator.

Access for:

Students with Disabilities

Engagement (Activity 2)

3 English Learners

MLR1 (Activity 2)

Instructional Routines

True or False (Warm-up)

Lesson Timeline

Warm-up	10 min
Activity 1	20 min
Activity 2	15 min
Lesson Synthesis	10 min
Cool-down	5 min

Teacher Reflection Question

As students worked in their small groups today, whose ideas were heard, valued, and accepted? How can you adjust the group structure tomorrow to ensure each student's ideas are a part of the collective learning?

Cool-down	(to be completed at the end of the lessor
COOI GOTTII	(to be completed at the end of the lesson

© 5 min

Same Numerator

Standards Alignments

Addressing 3.NF.A.3.d

Student-facing Task Statement

Use the symbols > and < to make the statement true. Explain or show your reasoning.

$$\frac{4}{3}$$
 $\frac{4}{6}$

Student Responses

>. Sample response: Thirds are larger than sixths, so 4 thirds is greater than 4 sixths.