Lesson 10 Practice Problems

1. A store receives 2,000 decks of popular trading cards. The number of decks of cards is a function, d, of the number of days, t, since the shipment arrived. Here is a table showing some values of d.

t	$d(t)$
0	2,000
5	1,283
10	823
15	528
20	338

Calculate the average rate of change for the following intervals:
a. day 0 to day 5
b. day 15 to day 20
2. A study was conducted to analyze the effects on deer population in a particular area. Let f be an exponential function that gives the population of deer t years after the study began.

If $f(t)=a \cdot b^{t}$ and the population is increasing, select all statements that must be true.
A. $b>1$
B. $b<1$
C. The average rate of change from year 0 to year 5 is less than the average rate of change from year 10 to year 15.
D. The average rate of change from year 0 to year 5 is greater than the average rate of change from year 10 to year 15 .
E. $a>0$
3. Function f models the population, in thousands, of a city t years after 1930 .

The average rate of change of f from $t=0$ to $t=70$ is approximately 14 thousand people per year.

Is this value a good way to describe the population change of the city over that time period? Explain or show your reasoning.

4. The function, f, gives the number of copies a book has sold w weeks after it was published. The equation $f(w)=500 \cdot 2^{w}$ defines this function.

Select all domains for which the average rate of change could be a good measure for the number of books sold.
A. $0 \leq w \leq 2$
B. $0 \leq w \leq 7$
C. $5 \leq w \leq 7$
D. $5 \leq w \leq 10$
E. $0 \leq w \leq 10$
5. The graph shows a bacteria population decreasing exponentially over time.

The equation $p=100,000,000 \cdot\left(\frac{2}{3}\right)^{h}$ gives the size of a second population of bacteria, where h is the number of hours since it was measured at 100 million.

Which bacterial population decays more quickly? Explain how you know.

6. Technology required. A moth population, p, is modeled by the equation $p=500,000 \cdot\left(\frac{1}{2}\right)^{w}$, where w is the number of weeks since the population was first measured.
a. What was the moth population when it was first measured?
b. What was the moth population after 1 week? What about 1.5 weeks?
c. Use technology to graph the population and find out when it falls below 10,000.
(From Unit 5, Lesson 9.)
7. Give a value for r that would indicate that a line of best fit has a positive slope and models the data well.
(From Unit 3, Lesson 7.)
8. The size of a district and the number of parks in it have a weak positive relationship.

Explain what it means to have a weak positive relationship in this context.
(From Unit 3, Lesson 8.)
9. Here is a graph of Han's distance from home as he drives.

Identify the intercepts of the graph and explain what they mean in terms of Han's distance from home.

