Lesson 2: Half a Square

• Let's investigate the properties of diagonals of squares.

2.1: Diagonals of Rectangles

Calculate the values of *x* and *y*.

2.2: Decomposing Squares

- 1. Draw a square with side lengths of 1 cm. Estimate the length of the diagonal. Then calculate the length of the diagonal.
- 2. Measure the side length and diagonal length of several squares, in centimeters. Compute the ratio of side to diagonal length for each.

3. Make a conjecture.

2.3: Generalize Half Squares

Calculate the lengths of the 5 unlabeled sides.

Are you ready for more?

Square ABCD has a diagonal length of x and side length of s. Rhombus EFGH has side length s.

- 1. How do the diagonals of *EFGH* compare to the diagonals of *ABCD*?
- 2. What is the maximum possible length of a diagonal of a rhombus of side length *s*?

Lesson 2 Summary

Drawing the diagonal of a square decomposes the square into 2 congruent triangles. They are right isosceles triangles with acute angles of 45 degrees. These congruent angles make all right isosceles triangles similar by the Angle-Angle Triangle Similarity Theorem.

Consider an isosceles right triangle with legs 1 unit long where *c* is the length of the hypotenuse. By the Pythagorean Theorem, we can say $1^2 + 1^2 = c^2$ so $c = \sqrt{2}$. The hypotenuse of an isosceles right triangle with legs 1 unit long is $\sqrt{2}$ units long.

Now, consider an isosceles right triangle with legs x units long. By the Angle-Angle Triangle Similarity Theorem, the triangle is similar to the isosceles right triangle with side lengths of 1, 1, and $\sqrt{2}$ units. A scale factor of x takes the triangle with leg length of 1 to the triangle with leg length of x. Therefore, the hypotenuse of the isosceles right triangle with legs x units long is $x\sqrt{2}$ units long.

In triangle *ABC*, x = 6 so *AC* is 6 units long and *BC* is $6\sqrt{2}$ units long.

In triangle DEF, $x\sqrt{2} = 12$ so $x = \frac{12}{\sqrt{2}}$, which means both EF and DF are $\frac{12}{\sqrt{2}}$ units long.