Unit 7 Lesson 5: Negative Exponents with Powers of 10

1 Number Talk: What's That Exponent? (Warm up)

Student Task Statement

Solve each equation mentally.

$$\frac{100}{1} = 10^x$$

$$\frac{100}{x} = 10^1$$

$$\frac{x}{100} = 10^0$$

$$\frac{100}{1000} = 10^x$$

2 Negative Exponent Table

Student Task Statement

Complete the table to explore what negative exponents mean.

	/	·10	·10	·10	·10	·10	·10
using exponents	10 ³	10 ²	10 ¹				
as a decimal	1000.0			1.0		0.01	
as a fraction		<u>100</u> 1		1/1			1 1000
.7 .7 .7 .7 .7							

- 1. As you move toward the left, each number is being multiplied by 10. What is the multiplier as you move right?
- 2. How does a multiplier of 10 affect the placement of the decimal in the product? How does the other multiplier affect the placement of the decimal in the product?
- 3. Use the patterns you found in the table to write 10^{-7} as a fraction.
- 4. Use the patterns you found in the table to write 10^{-5} as a decimal.
- 5. Write $\frac{1}{100,000,000}$ using a single exponent.
- 6. Use the patterns in the table to write 10^{-n} as a fraction.

3 Follow the Exponent Rules

Student Task Statement

1. a. Match each exponential expression with an equivalent multiplication expression:

- b. Write $(10^2)^{-3}$ as a power of 10 with a single exponent. Be prepared to explain your reasoning.
- 2. a. Match each exponential expression with an equivalent multiplication expression:

$$\frac{\frac{10^{2}}{10^{5}}}{\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}} \\
\frac{10^{2}}{10^{-5}} \\
\frac{10 \cdot 10}{10 \cdot 10 \cdot 10 \cdot 10 \cdot 10} \\
\frac{10^{-2}}{10^{5}} \\
\frac{\frac{1}{10} \cdot \frac{1}{10}}{10 \cdot 10 \cdot 10 \cdot 10 \cdot 10} \\
\frac{10^{-2}}{10^{-5}} \\
\frac{10 \cdot 10}{10 \cdot 10 \cdot 10 \cdot 10 \cdot 10} \\
\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$$

b. Write $\frac{10^{-2}}{10^{-5}}$ as a power of 10 with a single exponent. Be prepared to explain your reasoning.

3. a. Match each exponential expression with an equivalent multiplication expression:

$$10^{4} \cdot 10^{3}$$

$$10^{4} \cdot 10^{-3}$$

$$10^{-4} \cdot 10^{-3}$$

$$10^{-4} \cdot 10^{-3}$$

$$10^{-4} \cdot 10^{-3}$$

$$(10 \cdot 10 \cdot 10) \cdot (\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10})$$

$$(\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}) \cdot (10 \cdot 10 \cdot 10)$$

$$(10 \cdot 10 \cdot 10 \cdot 10) \cdot (10 \cdot 10 \cdot 10)$$

b. Write $10^{-4} \cdot 10^3$ as a power of 10 with a single exponent. Be prepared to explain your reasoning.