Unit 6 Lesson 12: Tangent

1 Notice and Wonder: An Unusual Function (Warm up)

Student Task Statement

What do you notice? What do you wonder?

θ	$\cos(\theta)$	$\sin(\theta)$	$tan(\theta)$
$-\frac{\pi}{2}$	0	-1	
$-\frac{\pi}{3}$	0.5	-0.87	
$-\frac{\pi}{6}$	0.87	-0.5	
0	1	0	
$\frac{\pi}{6}$	0.87	0.5	
$\frac{\pi}{3}$	0.5	0.87	
$\frac{\pi}{2}$	0	1	

2 A Tangent Ratio

Student Task Statement

1. Complete the table. For each positive angle in the table, add the corresponding point and the segment between it and the origin to the unit circle.

θ	$\cos(\theta)$	$\sin(\theta)$	$tan(\theta)$
$-\frac{\pi}{2}$	0	-1	
$-\frac{\pi}{3}$	0.5	-0.87	
$-\frac{\pi}{6}$	0.87	-0.5	
0	1	0	
$\frac{\pi}{6}$	0.87	0.5	
$\frac{\pi}{3}$	0.5	0.87	
$\frac{\pi}{2}$	0	1	
$\frac{\frac{\pi}{3}}{\frac{\pi}{2}}$ $\frac{2\pi}{3}$			
$\frac{5\pi}{6}$			
π			
$\frac{7\pi}{6}$			
$\frac{4\pi}{3}$			
$\frac{3\pi}{2}$			
$\frac{5\pi}{3}$			
$\frac{11\pi}{6}$			
2π			

2. How are the values of $tan(\theta)$ like the values of $cos(\theta)$ and $sin(\theta)$? How are they different?

3 The Tangent Function

Student Task Statement

Before we graph $y = \tan(\theta)$, let's figure out some things that must be true.

- 1. Explain why the graph of $\tan(\theta)$ has a vertical asymptote at $x = \frac{\pi}{2}$.
- 2. Does the graph of $tan(\theta)$ have other vertical asymptotes? Explain how you know.
- 3. For which values of θ is $tan(\theta)$ zero? For which values of θ is $tan(\theta)$ one? Explain how you know.
- 4. Is the graph of $tan(\theta)$ periodic? Explain how you know.

Images for Activity Synthesis

