Unit 7 Lesson 3: Powers of Powers of 10

1 Big Cube (Warm up)

Student Task Statement

What is the volume of a giant cube that measures $10,000 \mathrm{~km}$ on each side?

2 Raising Powers of 10 to Another Power

Student Task Statement

1. a. Complete the table to explore patterns in the exponents when raising a power of 10 to a power. You may skip a single box in the table, but if you do, be prepared to explain why you skipped it.

expression	expanded	single power of 10
$\left(10^{3}\right)^{2}$	$(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)$	10^{6}
$\left(10^{2}\right)^{5}$	$(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)$	
	$(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)$	
$\left(10^{4}\right)^{2}$		
$\left(10^{8}\right)^{11}$		

b. If you chose to skip one entry in the table, which entry did you skip? Why?
2. Use the patterns you found in the table to rewrite $\left(10^{m}\right)^{n}$ as an equivalent expression with a single exponent, like $10 \square$.
3. If you took the amount of oil consumed in 2 months in 2013 worldwide, you could make a cube of oil that measures 10^{3} meters on each side. How many cubic meters of oil is this? Do you think this would be enough to fill a pond, a lake, or an ocean?

Activity Synthesis

$$
\begin{gathered}
\text { Rule } \\
\left(10^{n}\right)^{m}=10^{n \cdot m}
\end{gathered}
$$

Example for Why it Works

$$
\begin{aligned}
&\left(10^{2}\right)^{3}=\underline{(10 \cdot 10)} \cdot \underline{(10 \cdot 10)} \cdot \underline{(10 \cdot 10)}=10^{6} \\
& \text { three groups of }=\quad \begin{array}{l}
\text { six factors } \\
\text { that are ten }
\end{array} \\
& \text { two factors that are ten }
\end{aligned}
$$

3 How Do the Rules Work?

Student Task Statement

Andre and Elena want to write $10^{2} \cdot 10^{2} \cdot 10^{2}$ with a single exponent.

- Andre says, "When you multiply powers with the same base, it just means you add the exponents, so $10^{2} \cdot 10^{2} \cdot 10^{2}=10^{2+2+2}=10^{6}$."
- Elena says, " 10^{2} is multiplied by itself 3 times, so $10^{2} \cdot 10^{2} \cdot 10^{2}=\left(10^{2}\right)^{3}=10^{2+3}=10^{5}$."

Do you agree with either of them? Explain your reasoning.

