Unit 7 Lesson 3: Powers of Powers of 10

1 Big Cube (Warm up)

Student Task Statement

What is the volume of a giant cube that measures 10,000 km on each side?

2 Raising Powers of 10 to Another Power

Student Task Statement

1. a. Complete the table to explore patterns in the exponents when raising a power of 10 to a power. You may skip a single box in the table, but if you do, be prepared to explain why you skipped it.

expression	expanded	single power of 10
$(10^3)^2$	$(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)$	10 ⁶
$(10^2)^5$	$(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)$	
	$(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)$	
$(10^4)^2$		
$(10^8)^{11}$		

- b. If you chose to skip one entry in the table, which entry did you skip? Why?
- 2. Use the patterns you found in the table to rewrite $(10^m)^n$ as an equivalent expression with a single exponent, like 10^{\square} .
- 3. If you took the amount of oil consumed in 2 months in 2013 worldwide, you could make a cube of oil that measures 10^3 meters on each side. How many cubic meters of oil is this? Do you think this would be enough to fill a pond, a lake, or an ocean?

Activity Synthesis

Rule

 $(10^n)^m = 10^{n \cdot m}$

Example for Why it Works

$$(10^2)^3 = (\underline{10 \cdot 10}) \cdot (\underline{10 \cdot 10}) \cdot (\underline{10 \cdot 10}) = 10^6$$

three groups of _____ six factors two factors that are ten that are ten

3 How Do the Rules Work?

Student Task Statement

Andre and Elena want to write $10^2 \cdot 10^2 \cdot 10^2$ with a single exponent.

- Andre says, "When you multiply powers with the same **base**, it just means you add the exponents, so $10^2 \cdot 10^2 \cdot 10^2 = 10^{2+2+2} = 10^6$."
- Elena says, " 10^2 is multiplied by itself 3 times, so $10^2 \cdot 10^2 \cdot 10^2 = (10^2)^3 = 10^{2+3} = 10^5$."

Do you agree with either of them? Explain your reasoning.