Unit 6 Lesson 14: Transforming Trigonometric Functions

1 Translated Parabolas (Warm up)

Student Task Statement

Match each equation with its graph. Be prepared to explain your reasoning.

1.
$$y = x^2$$

2.
$$y = (x - 1)^2$$

3.
$$y = (x + 3)^2$$

Α

В

C

Activity Synthesis

2 Windmills Everywhere

Images for Launch

Student Task Statement

Here are three equations for three different windmills. Each equation describes the height h, in feet above the ground, of a point at the tip of a blade of a different windmill. The point is at the far right when the angle θ takes the value 0. Describe each windmill and how it is spinning.

1.
$$h = 2.5 \sin(\theta) + 10$$

$$2. h = \frac{4}{5}\sin(\theta) + 3$$

3.
$$h = -1.5 \sin(\theta) + 5$$

3 Spinning Fan

Student Task Statement

A fan has radius 1 foot. A point P starts in the position shown in the picture. The center of the fan is at (0,0) and the point P is at the $\frac{\pi}{6}$ position on the circle. The fan turns in a counterclockwise direction.

1. Sketch a graph of the horizontal position h, in feet, of P as a function of the angle of rotation θ of the fan from its starting position.

2. How does this graph compare to the graph of $h = \cos(\theta)$?

3. Sketch a graph of the vertical position v, in feet, of P as a function of the angle of rotation θ of the fan.

4. How does this graph compare to the graph of $v = \sin(\theta)$?

Activity Synthesis

Images for Activity Synthesis

