Unit 6 Lesson 14: Transforming Trigonometric

 Functions
1 Translated Parabolas (Warm up)

Student Task Statement

Match each equation with its graph. Be prepared to explain your reasoning.

1. $y=x^{2}$
2. $y=(x-1)^{2}$
3. $y=(x+3)^{2}$

A

c

Activity Synthesis

2 Windmills Everywhere

Images for Launch

Student Task Statement

Here are three equations for three different windmills. Each equation describes the height h, in feet above the ground, of a point at the tip of a blade of a different windmill. The point is at the far right when the angle θ takes the value 0 . Describe each windmill and how it is spinning.

1. $h=2.5 \sin (\theta)+10$
2. $h=\frac{4}{5} \sin (\theta)+3$
3. $h=-1.5 \sin (\theta)+5$

3 Spinning Fan

Student Task Statement

A fan has radius 1 foot. A point P starts in the position shown in the picture. The center of the fan is at $(0,0)$ and the point P is at the $\frac{\pi}{6}$ position on the circle. The fan turns in a counterclockwise direction.

1. Sketch a graph of the horizontal position h, in feet, of P as a function of the angle of rotation θ of the fan from its starting position.

2. How does this graph compare to the graph of $h=\cos (\theta)$?
3. Sketch a graph of the vertical position v, in feet, of P as a function of the angle of rotation θ of the fan.

4. How does this graph compare to the graph of $v=\sin (\theta)$?

Images for Activity Synthesis

