Lesson 16 Practice Problems

1. There are many cylinders with a volume of 144π cubic inches. The height $h(r)$ in inches of one of these cylinders is a function of its radius r in inches where $h(r)=\frac{144}{r^{2}}$.
a. What is the height of one of these cylinders if its radius is 2 inches?
b. What is the height of one of these cylinders if its radius is 3 inches?
c. What is the height of one of these cylinders if its radius is 6 inches?
2. The surface area $S(r)$ in square units of a cylinder with a volume of 18 cubic units is a function of its radius r in units where $S(r)=2 \pi r^{2}+\frac{36}{r}$. What is the surface area of a cylinder with a volume of 18 cubic units and a radius of 3 units?
3. Han finds an expression for $S(r)$ that gives the surface area in square inches of any cylindrical can with a specific fixed volume, in terms of its radius r in inches. This is the graph Han gets if he allows r to take on any value between -1 and 5 .
a. What would be a more appropriate domain for Han to use instead?
b. What is the approximate minimum surface area for the can?

4. The graph of a polynomial function f is shown. Is the degree of the polynomial even or odd? Explain your reasoning.

(From Unit 2, Lesson 8.)
5. The polynomial function $p(x)=x^{4}+4 x^{3}-7 x^{2}-22 x+24$ has known factors of $(x+4)$ and $(x-1)$.
a. Rewrite $p(x)$ as the product of linear factors.
b. Draw a rough sketch of the graph of the function.
6. Which polynomial has $(x+1)$ as a factor?
A. $x^{3}+2 x^{2}-19 x-20$
B. $x^{3}-21 x+20$
C. $x^{3}+8 x+11 x-20$
D. $x^{3}-3 x^{2}+3 x-1$
(From Unit 2, Lesson 15.)
