Lesson 15 Practice Problems

1. For the polynomial function $f(x)=x^{3}-2 x^{2}-5 x+6$, we have $f(0)=6, f(2)=-4, f(-2)=0, f(3)=0, f(-1)=8, f(1)=0$. Rewrite $f(x)$ as a product of linear factors.
2. Select all the polynomials that have $(x-4)$ as a factor.
A. $x^{3}-13 x-12$
B. $x^{3}+8 x^{2}+19 x+12$
C. $x^{3}+6 x+5 x-12$
D. $x^{3}-x^{2}-10 x-8$
E. $x^{2}-4$
3. Write a polynomial function, $p(x)$, with degree 3 that has $p(7)=0$.
4. Long division was used here to divide the polynomial function $p(x)=x^{3}+7 x^{2}-20 x-110$ by $(x-5)$ and to divide it by $(x+5)$.

$$
\begin{array}{rr}
x^{2}+12 x+40 \\
x - 5 \longdiv { x ^ { 3 } + 7 x ^ { 2 } - 2 0 x - 1 1 0 } & x + 5 \longdiv { x ^ { 3 } + 7 x ^ { 2 } - 2 0 x - 1 1 0 } \\
\frac{-x^{3}+5 x^{2}}{12 x^{2}-20 x} & \frac{-x^{3}-5 x^{2}}{2 x^{2}-20 x} \\
\frac{-12 x^{2}+60 x}{40 x-110} & \frac{-2 x^{2}-10 x}{-30 x-110} \\
\frac{-40 x+200}{90} & \frac{30 x+150}{40}
\end{array}
$$

a. What is $p(-5)$?
b. What is $p(5)$?
5. Which polynomial function has zeros when $x=5, \frac{2}{3},-7$?
A. $f(x)=(x+5)(2 x+3)(x-7)$
B. $f(x)=(x+5)(3 x+2)(x-7)$
C. $f(x)=(x-5)(2 x-3)(x+7)$
D. $f(x)=(x-5)(3 x-2)(x+7)$
(From Unit 2, Lesson 5.)
6. The polynomial function $q(x)=3 x^{4}+8 x^{3}-13 x^{2}-22 x+24$ has known factors $(x+3)$ and $(x+2)$. Rewrite $q(x)$ as the product of linear factors.
(From Unit 2, Lesson 12.)
7. We know these things about a polynomial function $f(x)$: it has degree 3, the leading coefficient is negative, and it has zeros at $x=-5,-1,3$. Sketch a graph of $f(x)$ given this information.

(From Unit 2, Lesson 14.)

