Unit 4 Lesson 3: Understanding Rational Inputs

1 Keeping Equations True (Warm up)

Student Task Statement

1. Select all solutions to $x \cdot x = 5$. Be prepared to explain your reasoning.

a.
$$\frac{1}{25}$$

b. $\sqrt{5}$
c. $\frac{5}{2}$
d. $5^{\frac{1}{2}}$
e. $\frac{\sqrt{5}}{2}$
f. $\sqrt{25}$

2. Select **all** solutions to $p \cdot p \cdot p = 10$. Be prepared to explain your reasoning.

a.
$$10^{\frac{1}{3}}$$

b. $\sqrt{10}$
c. $\frac{10}{3}$
d. $\frac{\sqrt{10}}{3}$
e. $\sqrt[3]{10}$
f. $\frac{1}{3}\sqrt{10}$

2 Florida in the 1800's

Student Task Statement

In 1840, the population of Florida was about 54,500. Between 1840 and 1860, the population grew exponentially, increasing by about 60% each decade.

- 1. Find the population of Florida in 1850 and in 1860 according to this model.
- 2. The population is a function f of the number of decades d after 1840. Write an equation for f.
- 3. a. Explain what f(0.5) means in this situation.
 - b. Graph your function using graphing technology and estimate the value of f(0.5).
 - c. Explain why we can find the value of f(0.5) by multiplying 54,500 by $\sqrt{1.6}$. Find that value.
- 4. Based on the model, what was the population of Florida in 1858? Show your reasoning.

3 Disappearing Medicine

Student Task Statement

The amount of a medicine in the bloodstream of a patient decreases roughly exponentially. Here is a graph representing f, an exponential function that models the medicine in the body of a patient, t hours after an injection is given.

- 1. Use the graph to estimate $f\left(\frac{1}{3}\right)$ and explain what it tells us in this situation.
- 2. After one hour, 0.75 mg of medicine remains in the bloodstream. Find an equation that defines f.

Images for Activity Synthesis

