Lesson 2: Congruent Parts, Part 2

- Let's name figures in ways that help us see the corresponding parts.

2.1: Math Talk: Which Are Congruent?

Each pair of figures is congruent. Decide whether each congruence statement is true or false.
$\triangle A B C \cong \triangle F E D$

Triangle $A B C$ is congruent to triangle $F E D$.
$P Z J M \cong L Y X B$

Quadrilateral $P Z J M$ is congruent to quadrilateral $L Y X B$.
$\triangle J K L \cong \triangle Q R S$

Triangle $J K L$ is congruent to triangle $Q R S$.
$A B C D E \cong P Q R S T$

Pentagon $A B C D E$ is congruent to pentagon $P Q R S T$.

2.2: Which Triangles Are Congruent?

Here are 3 triangles.

1. Triangle $P Q R$ is congruent to which triangle? Explain your reasoning.
2. Show a sequence of rigid motions that takes triangle $P Q R$ to that triangle. Draw each step of the transformation.
3. Explain why there can't be a rigid motion from triangle $P Q R$ to the other triangle.

2.3: Are These Parts Congruent?

1. Triangle $A B D$ is a rotation of triangle $C D B$ around point E by 180°. Is angle $A D B$ congruent to angle $C D B$? If so, explain your reasoning. If not, which angle is $A D B$ congruent to?
2. Polygon $H I J K L$ is a reflection and translation of polygon GFONM. Is segment $K J$ congruent to segment $N M$? If so, explain your reasoning. If not, which segment is $N M$ congruent to?
3. Quadrilateral $P Q R S$ is a rotation of polygon $V Z Y W$. Is angle $Q R S$ congruent to angle $Z Y W$? If so, explain your reasoning. If not, which angle is $Q R S$ congruent to?

Are you ready for more?

Suppose quadrilateral $P Q R S$ was both a rotation of quadrilateral $V Z Y W$ and also a reflection of quadrilateral $Y Z V W$. What can we conclude about the shape of our quadrilaterals? Explain why.

Lesson 2 Summary

Naming congruent figures so it's clear from the name which parts correspond makes it easier to check whether 2 figures are congruent and to use corresponding parts. In this image, segment $A B$ appears to be congruent to segment $D E$. Also, segment $E F$ appears to be congruent to segment $B C$. So, it makes more sense to conjecture that triangle $A B C$ is congruent to
 triangle $D E F$ than to conjecture triangle $A B C$ is congruent to triangle $F D E$.

If we are told quadrilateral $M A T H$ is congruent to quadrilateral $L O V E$, without even looking at the figures we know:

- Angle M is congruent to angle L.
- Angle A is congruent to angle O.
- Angle T is congruent to angle V.
- Angle H is congruent to angle E.
- Segments $M A$ and $L O$ are congruent.
- Segments $A T$ and $O V$ are congruent.
- Segments TH and VE are congruent.
- Segments $H M$ and $E L$ are congruent.

Quadrilaterals MATH and LOVE can be named in many different ways so that they still correspond-such as $A T H M$ is congruent to $O V E L$ or $T H M A$ is congruent to $V E L O$. But $A T M H$ is congruent to LOVE means there are different corresponding parts. Note that quadrilateral MATH refers to a different way of connecting the points than quadrilateral $A T M H$.

