Lesson 7 Practice Problems

1. The equation and the tables represent two different functions. Use the equation $b=4 a-5$ and the table to answer the questions. This table represents c as a function of a.

a	-3	0	2	5	10	12
c	-20	7	3	21	19	45

a. When a is -3 , is b or c greater?
b. When c is 21 , what is the value of a ? What is the value of b that goes with this value of a ?
c. When a is 6 , is b or c greater?
d. For what values of a do we know that c is greater than b ?
2. Elena and Lin are training for a race. Elena runs her mile at a constant speed of 7.5 miles per hour.

Lin's total distances are recorded every minute:

time (minutes)	1	2	3	4	5	6	7	8	9
distance (miles)	0.11	0.21	0.32	0.41	0.53	0.62	0.73	0.85	1

a. Who finished their mile first?
b. This is a graph of Lin's progress. Draw a graph to represent Elena's mile on the same axes.

c. For these models, is distance a function of time? Is time a function of distance? Explain how you know.
3. Match each function rule with the value that could not be a possible input for that function.
A. 3 divided by the input

1. 3
B. Add 4 to the input, then divide this 2.4 value into 3
2. -4
C. Subtract 3 from the input, then
divide this value into 1
3. 1
(From Unit 6, Lesson 2.)
4. Find a value of x that makes the equation true. Explain your reasoning, and check that your answer is correct.

$$
-(-2 x+1)=9-14 x
$$

(From Unit 4, Lesson 13.)

