Unit 4 Lesson 18: Using Functions to Model Battery Power

1 Devices (Warm up)

Student Task Statement

Think about an electronic device with a battery that you have to charge on a regular basis.

- 1. What device is it?
- 2. When you are using the device, about how long does it take the battery to go from 100% charged until the time you plug it in again to recharge?
- 3. About how long does it take to charge to 100% starting from 0% or nearly 0%?
- 4. Suppose you plugged in your device when the battery was 50% charged.

How long do you think it would take to recharge the device to 100% compared to the time it would take if the device was at 0%? Would it be exactly half the time, more than half the time, or less than half the time it would take if starting from 0%?

2 Charging a Phone

Student Task Statement

A cell phone is plugged in to be charged. The table shows the percent of battery power at some times after it was plugged in.

time	percent charged
11:00 a.m.	6%
11:10 a.m.	15%
11:30 a.m.	35%
11:40 a.m.	43%

At what time will the battery be 100% charged? Use the data to find out and explain or show your reasoning.

3 How Long Will It Last?

Images for Launch

ul -		
< Advanced battery usage		
52%		
	100%	
	50%	
	0%	
9 hr ago		

Student Task Statement

1. The image shows the battery usage of a cell phone 9 hours since it was fully charged.

It also shows a prediction that the battery would last 8 more hours.

a. Write an equation for a model that fits the data in the image and gives the percent of battery power, *p*, as a function of time since the phone was fully charged, *t*. Show your reasoning.

If you get stuck, consider creating a table of values or a scatter plot of the data.

b. Based on your function, what percentage of power would the battery have 4 hours after this image was taken? What about 5 hours after the image was taken? Show your reasoning. 2. Here are two more images showing the battery usage at two later times, before the battery was charged again.

- a. How well did the function you wrote predict the battery power 4 and 5 hours since the first image was taken (that is, 13 and 14 hours after the battery was fully charged)? Explain or show your reasoning.
- b. What do you notice from the images about the change in the prediction between t = 13 and t = 14?
- c. Write a new equation for a function that would better fit the data shown in the last image.