Lesson 6 Practice Problems

1. Here is a diagram of an acute triangle and three squares.

2. m, p, and z represent the lengths of the three sides of this right triangle.

Select all the equations that represent the relationship between m, p, and z.
A. $m^{2}+p^{2}=z^{2}$
B. $m^{2}=p^{2}+z^{2}$
C. $m^{2}=z^{2}+p^{2}$
D. $p^{2}+m^{2}=z^{2}$
E. $z^{2}+p^{2}=m^{2}$
F. $p^{2}+z^{2}=m^{2}$
3. The lengths of the three sides are given for several right triangles. For each, write an equation that expresses the relationship between the lengths of the three sides.
a. $10,6,8$
b. $\sqrt{5}, \sqrt{3}, \sqrt{8}$
c. $5, \sqrt{5}, \sqrt{30}$
d. $1, \sqrt{37}, 6$
e. $3, \sqrt{2}, \sqrt{7}$
4. Order the following expressions from least to greatest.
$25 \div 10 \quad 250,000 \div 1,000 \quad 2.5 \div 1,000 \quad 0.025 \div 1$
5. Which is the best explanation for why $-\sqrt{10}$ is irrational?
A. $-\sqrt{10}$ is irrational because it is not rational.
B. $-\sqrt{10}$ is irrational because it is less than zero.
C. $-\sqrt{10}$ is irrational because it is not a whole number.
D. $-\sqrt{10}$ is irrational because if I put $-\sqrt{10}$ into a calculator, I get -3.16227766 , which does not make a repeating pattern.
(From Unit 8, Lesson 3.)
6. A teacher tells her students she is just over 1 and $\frac{1}{2}$ billion seconds old.
a. Write her age in seconds using scientific notation.
b. What is a more reasonable unit of measurement for this situation?
c. How old is she when you use a more reasonable unit of measurement?

