

Lesson 1 Practice Problems

1. Find the area of each square. Each grid square represents 1 square unit.

- 2. Find the length of a side of a square if its area is:
 - a. 81 square inches

b.
$$\frac{4}{25}$$
 cm²

- c. 0.49 square units
- d. m^2 square units

- 3. Find the area of a square if its side length is:
 - a. 3 inches
 - b. 7 units
 - c. 100 cm
 - d. 40 inches
 - e. x units
- 4. Evaluate $(3.1 \times 10^4) \cdot (2 \times 10^6)$. Choose the correct answer:
 - A. 5.1×10^{10}
 - B. 5.1×10^{24}
 - $C. 6.2 \times 10^{10}$
 - D. 6.2×10^{24}

(From Unit 7, Lesson 14.)

Lesson 1

5. Noah reads the problem, "Evaluate each expression, giving the answer in scientific notation." The first problem part is: $5.4 \times 10^5 + 2.3 \times 10^4$.

Noah says, "I can rewrite 5.4×10^5 as 54×10^4 . Now I can add the numbers: $54 \times 10^4 + 2.3 \times 10^4 = 56.3 \times 10^4$."

Do you agree with Noah's solution to the problem? Explain your reasoning.

(From Unit 7, Lesson 15.)

- 6. Select **all** the expressions that are equivalent to 3^8 .
 - A. $(3^2)^4$
 - B. 8^{3}
 - C. 3 · 3 · 3 · 3 · 3 · 3 · 3
 - D. $(3^4)^2$
 - E. $\frac{3^6}{3^{-2}}$
 - $F. 3^6 \cdot 10^2$

(From Unit 7, Lesson 6.)