## Family Support Materials

## Inequalities, Expressions, and Equations <br> Writing Equivalent Expressions

## Family Support Materials 1

This week your student will be working with equivalent expressions (expressions that are always equal, for any value of the variable). For example, $2 x+7+4 x$ and $6 x+10-3$ are equivalent expressions. We can see that these expressions are equal when we try different values for $x$.

|  | $2 x+7+4 x$ | $6 x+10-3$ |
| :---: | :---: | :---: |
| when $x$ is 5 | $2 \cdot 5+7+4 \cdot 5$ | $6 \cdot 5+10-3$ |
|  | $10+7+20$ <br> 37 | $30+10-3$ <br> 37 |
|  | $2 \cdot-1+7+4 \cdot-1$ | $6 \cdot-1+10-3$ |
| when $x$ is -1 | $-2+7+-4$ | $-6+10-3$ |
|  | 1 | 1 |

We can also use properties of operations to see why these expressions have to be equivalent-they are each equivalent to the expression $6 x+7$.

Here is a task to try with your student:
Match each expression with an equivalent expression from the list below. One expression in the list will be left over.

1. $5 x+8-2 x+1$
2. $6(4 x-3)$
3. $(5 x+8)-(2 x+1)$
4. $-12 x+9$

List:

- $3 x+7$
- $3 x+9$
- $-3(4 x-3)$
- $24 x+3$
- $24 x-18$

Solution:

1. $3 x+9$ is equivalent to $5 x+8-2 x+1$, because $5 x+-2 x=3 x$ and $8+1=9$.
2. $24 x-18$ is equivalent to $6(4 x-3)$, because $6 \cdot 4 x=24 x$ and $6 \cdot-3=-18$.
3. $3 x+7$ is equivalent to $(5 x+8)-(2 x+1)$, because $5 x-2 x=3 x$ and $8-1=7$.
4. $-3(4 x-3)$ is equivalent to $-12 x+9$, because $-3 \cdot 4 x=-12 x$ and $-3 \cdot-3=9$.

## Equations in One Variable

## Family Support Materials 2

This week your student will work on solving linear equations. We can think of a balanced hanger as a metaphor for an equation. An equation says that the expressions on either side have equal value, just like a balanced hanger has equal weights on either side.


$$
a+2 b=5 b
$$

If we have a balanced hanger and add or remove the same amount of weight from each side, the result will still be in balance.

We can do this with equations as well: adding or subtracting the same amount from both sides of an equation keeps the sides equal to each other. For example, if $4 x+20$ and $-6 x+10$ have equal value, we can write an equation $4 x+20=-6 x+10$. We could add -10 to both sides of the equation or divide both sides of the equation by 2 and keep the sides equal to each other. Using these moves in systematic ways, we can find that $x=-1$ is a solution to this equation.

Here is a task to try with your student:
Elena and Noah work on the equation $\frac{1}{2}(x+4)=-10+2 x$ together. Elena's solution is $x=24$ and Noah's solution is $x=-8$. Here is their work:

Elena:

$$
\begin{aligned}
\frac{1}{2}(x+4) & =-10+2 x \\
x+4 & =-20+2 x \\
x+24 & =2 x \\
24 & =x \\
x & =24
\end{aligned}
$$

Noah:

$$
\begin{aligned}
\frac{1}{2}(x+4) & =-10+2 x \\
x+4 & =-20+4 x \\
-3 x+4 & =-20 \\
-3 x & =-24 \\
x & =-8
\end{aligned}
$$

Do you agree with their solutions? Explain or show your reasoning.
Solution:
No, they both have errors in their solutions.
Elena multiplied both sides of the equation by 2 in her first step, but forgot to multiply the $2 x$ by the 2 . We can also check Elena's answer by replacing $x$ with 24 in the original equation and seeing if the equation is true.

$$
\begin{aligned}
\frac{1}{2}(x+4) & =-10+2 x \\
\frac{1}{2}(24+4) & =-10+2(24) \\
\frac{1}{2}(28) & =-10+48 \\
14 & =38
\end{aligned}
$$

Since 14 is not equal to 38 , Elena's answer is not correct.
Noah divided both sides by -3 in his last step, but wrote -8 instead of 8 for $-24 \div-3$. We can also check Noah's answer by replacing $x$ with -8 in the original equation and seeing if the equation is true. Noah's answer is not correct.

